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DEVELOPMENT OF IMPROVED MODELS AND DESIGNS FOR
COATED-PARTICLE GAS REACTOR FUELS:
FINAL REPORT

EXECUTIVE SUMMARY

The objective of this INERI project was to
develop improved fuel behavior models for gas
reactor coated-particle fuels and to explore
improved coated-particle fuel designs that could
be used reliably at very high burnups and
potentially in gas-cooled fast reactors.
Idaho

Engineering Laboratory (INEEL), Centre Etude
(CEA),
Institute of Technology (MIT). To accomplish

Project

participants  included the National

Atomique and the Massachusetts

the project objectives, work was organized into

the following five tasks:

e Task 1, information relative to material
property databases and existing fuel
models were exchanged,

e Task 2, an integrated fuel model was
developed that includes the effects of
multi-dimensional failure mechanisms and
phenomena not beforehand in the models,

e Task 3, deterministic fuel performance
calculations were performed to evaluate
the capacity of classical TRISO fuel to
reach extended burnups, and thereby
establish requirements for fuel materials,

o Task 4, the feasibility of using particle
fuel in a fast neutron environment was
investigated, and

il

e Task 5, an irradiation testing strategy for
prototype fuel particles was developed.

The CEA and INEEL exchanged their databases

on coated particle fuel material

property
correlations. Comparison between the U.S. and
European data revealed many similarities and a
These correlations
of fuel

Such

few important differences.

are used in model predictions

performance  during irradiation.
predictions are useful to understand the interplay
of important phenomena that could occur
outside of the existing irradiation envelope of
temperature, burnup and fast neutron fluence.
After reviewing and assessing the correlations, it
was observed that property data are generally
lacking for materials exposed to high fuel
burnups and neutron fluences. This current lack
of data will introduce uncertainty into model
predictions of fuel performance. Several key
material properties that affect fuel performance

were identified and briefly described.

The INEEL continued from earlier efforts to

develop an integrated fuel performance model



called PARFUME with the objective of
physically describing both the mechanical and
physico-chemical behavior of particle fuel under
irradiation.  In addition to the traditional
pressure vessel failure mode, the model includes
multi-dimensional failure mechanisms. These
mechanisms include particle failure due to
shrinkage cracks in the inner pyrolytic carbon
(IPyC) layer (Figure i), partial debonding
between the IPyC and SiC layers, particle
asphericity (Figure ii), and kernel migration. A
statistical approach is used to simulate detailed
finite element calculations and allows for
changes in fuel design attributes (e.g. thickness
of layers, dimensions of kernel) as well as
changes in important material properties which

increase the flexibility of the code.
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Figure i. Stress distributions in normal
(uncracked) and cracked particles.
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Figure ii. Effective particle asphericity on
particle failure probability.

Time-dependent thermal modeling capabilities
for either spherical or cylindrical fuel elements
and for individual fuel particles are included in
PARFUME. The thermal model accounts for
changes in fission gas as well as shrinkage and
swelling of the particle layers and kernel with
the potential for formation of a gap between the
buffer and IPyC layer. This effect is illustrated
in the figures iii and iv. The CEA has developed
a finite element, particle fuel simulation model
called ATLAS (Figure v). This model and the
material properties with constitutive
relationships have been incorporated into a more
general software platform called Pleiades.

Pleiades is able to analyze various fuel



geometries from single particles to fuel elements
and is able to account for the statistical
variability in coated particle fuel. Preliminary
benchmark calculations show good agreement

between the French and U.S. models.
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Figure iii. Gap development in a prismatic
block core as a function of burnup and particle
power.
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Figure iv. Kernel centerline temperatures in a
prismatic block core as a function of burnup
and particle power.
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Figure v. Tangential stress history for the mean
particle using ATLAS.

Deterministic fuel performance calculations
were performed to evaluate the ability of particle
fuel to reach extended burnups. These
calculations illuminated the requirements that
the fuel be able to withstand the stress levels and
internal chemical environment that would be
developed as a consequence of extended fuel
life. For these evaluations, the INEEL
developed, partially with internal funding, a
fission product chemistry and transport module
and incorporated it into PARFUME. This
module calculates CO production, shown as the
INEEL model in the figure below (Figure vi),
release of gaseous fission products into particle
void volume, and release to birth ratios for

selected isotopes.

An extensive review of the literature was

performed to understand the physical
mechanisms for fission product transport in PyC
and SiC. Mechanisms include: vapor transport
via Knudsen diffusion for gaseous fission

products and illustrated for Kr in Figure vii,



intercalation of alkali and alkali-earth fission
products like Cs and Sr in the PyC layers, grain
boundary diffusion, surface diffusion and bulk
diffusion. Diffusivities for Ag, Xe, Cs, and Sr

have also been gathered from the literature.
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Figure vi. INEEL model predictions of CO
yield per fission vs. temperature for a case with
pure UO, fuel compared with German (Proksch)
and historical U.S. (Kovacs) at t = 573 days
(approximately SOMWd/kg).
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Figure vii. Effective diffusivities for Knudsen
and viscous diffusion.

Scoping calculations were performed using a
diffusion and trapping code called TMAP to
model fission product transport from the
particles. The code can model diffusion and
trapping of multiple species and can model
diffusion in the presence of a temperature
gradient (the so-called Soret Effect). The code

also has a thermal model that has been used to
determine the temperature distribution and
thermal gradient in each of the layers of the
coated particle. Sensitivity studies have been
conducted to look at thermal diffusion effects
which are most important in the low density
buffer where large thermal gradients could be
expected depending on the power density in the
fuel particle. The INEEL also investigated the
effects of SiC layer thinning which may result
interactions  with  fission

from products.

Preliminary results indicated that widening of



the thinned area more strongly increases particle
failure probability than does deepening of the
thinned area. A metallic Pd — SiC interaction
model was developed and when combined with
the SiC layer thinning evaluation will form an

integrated model.

MIT performed diffusion couple experiments to
study Ag and Pd transport through SiC (see Fig.
viii). Results indicate that Knudsen pressure
driven diffusion is the most likely mechanism
for silver transport. This finding would imply
transport via nanoporosity or nanocracks in the
SiC. Knudsen and viscous pressure driven
diffusion calculations have been performed to
examine transport through sub micrometer size

pores or cracks in the SiC layer.

Figure viii. Graphite shell substrate for the
diffusion couples. Silver powder is placed
inside the shell then SiC is coated on the outside.

Calculations have been performed to examine
the feasibility of using TRISO-coated particles
in a gas-cooled fast reactor. Damage rates as
well as helium and hydrogen production in PyC

and SiC were calculated using a gas cooled fast

iii

reactor neutron spectrum. The calculated
damage rates (~ 50 dpa) are high enough that
radiation damage would be expected to
influence the material properties. In particular
the high radiation damage to the carbon layers
would result in unacceptable dimensional
change. At this level of radiation damage, SiC
would also see significant property changes in
terms of strength, swelling and other material
properties. The use of the traditional TRISO
coatings is not recommended for coated particle

fuels in fast spectrum reactor applications.

Potential irradiation of prototype fuel particles in
(ATR) was
It was determined that the ATR

the Advanced Test Reactor
examined.
would provide a near optimum balance of
burnup accumulation and fast neutron fluence
for irradiation testing of particle fuel. The CEA
have investigated particle fuel irradiation in the
French Material Testing Reactor, OSIRIS.
Initial experiments utilizing historical German
fuel and newly manufactured French fuel have
been planned and are being implemented under a

separate European program.



PROJECT ORGANIZATION:

Task Task Title Responsible Principal
Lead Investigators
1 Information Exchange INEEL, CEA David Petti, John
Maki, and Philippe
Martin, Mayeul Phélip
2 Model Development INEEL, CEA Gregory Miller, John
Maki, David Petti,
Mayeul Phélip
3 Concept Improvements MIT, INEEL Ron Ballinger and
David Petti
4 Feasibility of the concept in a CEA, INEEL Philippe Martin and
hard spectrum David Petti
5 Irradiation of prototype particles | INEEL, CEA David Petti and

Philippe Martin
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1. TASK 1: INFORMATION EXCHANGE ON EXISTING PARTICLE
FUEL DATA, MODELS, AND COMPREHENSION

Responsible Leads: INEEL, CEA

Brief Description of Objectives:

The CEA and INEEL exchanged their current databases on coated particle fuel performance
during irradiation and the computer models and material property correlations that have been
developed to describe that performance. This information included fission gas release data from
irradiation experiments, and post-irradiation examination results documenting the physical state
of the TRISO coatings and kernels after irradiation. In addition, information on the pedigree of
the fuel including fabrication conditions was included where available. (Much of the previous
U.S. database was obtained from the open literature or from GA.) Included with this
information, the INEEL provided detailed results from the NPR-1, NPR-1A and NPR-2
experiments that were conducted at the INEEL as part of the New Production Reactor program.
Once received, the particle fuel databases were reviewed and critically assessed. This
assessment identified data needs in regard to implementation and further development of fuel

behavior models. Attempts were made to fulfill those data needs.
1.1 Task Technical Overview - INEEL

Work was conducted on reviewing and assessing particle fuel material property correlations.
These correlations are used in model predictions of fuel performance during irradiation. Such
predictions are useful to understand the interplay of important phenomena that could occur
outside of the existing irradiation envelope of temperature, burnup and fast neutron fluence. It
has been observed that property data are generally lacking for materials exposed to high fuel
burnups and neutron fluences. This current lack of data will introduce uncertainty into model
predictions of fuel performance. Several key material properties that affect fuel performance are

briefly discussed below.

PyC Shrinkage and Swelling
Under irradiation, the PyC layers of the fuel particle experience either shrinkage or swelling

which affects the amount of stress experienced by the SiC layer. The correlations currently used



to represent shrinkage, or swelling, of the PyC layers were obtained from empirical fits to data as
compiled by the CEGA Corporation (CEGA 1993). These correlations are good up to fluences
of 3.7 x 10% n/m” and are functions of temperature, anisotropy, density and fast neutron fluence.
Figure 1-1 displays several fits and the underlying data at various temperatures. The amount of
data is rather sparse, which introduces significant uncertainty when the correlations are

extrapolated beyond neutron fluences of 5 x 10* n/m”.
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Figure 1-1. Database underlying the CEGA PyC shrinkage correlation expressed in units of %
strain.

Figure 1-2 displays the CEGA shrinkage correlation for several PyC anisotropies (as indicated
by the BAF values). The CEGA correlations are also compared to the UK STRESS3
correlations (Martin 2001) in Figure 1-3, for both high-temperature isotropic (HTI) and low-
temperature isotropic (LTI) high density, low anisotropy PyC. These correlations generally

display the same shrinkage trends but differ in magnitude, especially at high neutron fluences.
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Figure 1-2. CEGA correlation of PyC shrinkage for various anisotropies expressed in units of
% strain.
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Figure 1-3. STRESS3 and CEGA correlations for PyC shrinkage.

PyC Irradiation-Induced Creep

Irradiation-induced creep in the PyC layers is another important property that affects the stress-
state of the particle. However, there is a considerable range of values reported in the literature as
indicated by the sources listed in Table 1-1. Even by disregarding the value from Morgand

(which is generally considered to be suspect), the creep constant varies by a factor of about five.

Table 1-1. Selected irradiation induced creep constants for PyC (expressed for neutron fluences
with E > (.18 MeV).

Author Creep constant 102 (MPa n/m?) = _
Kaae et al. (1972) 1.0

Price and Bokros (1967) 1.3

Buckley et al (1975) 4.9

Buckley et al. (1975) 4.0

Brocklehurst and Gilchrist (1976) 33

Brocklehurst and Gilchrist (1976) 1.7

Morgand (1975) 13.3

One of the current creep correlations used in the INEEL particle fuel performance code, called
PARFUME, is the correlation compiled by the CEGA Corporation (CEGA 1993) and is referred
to as the base creep value. However, it has been shown that PARFUME particle failure
calculations of past NPR irradiation experiments (Miller 2002) best match actual test results
when this base creep value is multiplied by a factor of 2.5 (when coupled with a Poisson’s ratio
in creep of 0.5). An amplification factor of 2.0 may be better yet when coupled with a creep

Poisson’s ratio of 0.4. This amplified value is closer in magnitude to the historical U.S. value



and the currently used STRESS3 value than the base value. STRESS3 is the standard particle
fuel performance code used primarily by European investigators (Martin 2001). Table 1-2 lists
these creep constants at a temperature of 1200 °C. The most recent analysis, discussed in the
Task 2 section, suggests that an amplification value of 1.8 with the latest statistical method may

be somewhat better.

Table 1-2. Various PyC irradiation induced creep constants at 1200 °C (expressed for neutron
fluences with E > 0.18 MeV).

Correlation Creep constant 102 (MPa n/m?) 2
Base (CEGA correlation) 2.0
Amplified value (base x 2.5) 5.0
Historical U.S. 6.2
STRESS3 4.9

The magnitude of the PyC irradiation creep value has a large influence on the stress state of the
SiC layer. This is evident in Figure 1-4 which displays the stress experienced by the SiC layer
(with a cracked inner PyC layer) assuming the base and amplified creep values at 1200 °C.

Clearly more data are needed here.

Figure 1-4. Calculated SiC stress using different values of irradiation-induced creep.



PyC Poisson’s Ratio in Creep

The magnitude of Poisson’s ratio in creep for the PyC layer also has a significant affect on the
stress-state of the particle. This parameter is quoted with a range of 0.3 to 0.5 in the literature.
However, a value of 0.5 implies no volume change and it is generally acknowledged that a
realistic value is closer to 0.4. As illustrated by PARFUME calculations listed in Table 1-3, the

stress in the fuel particle can vary by over 20% depending upon the value of Poisson’s ratio.

Table 1-3. Effect of Poisson’s ratio in creep on calculated stress levels.

IPyC Stress SiC Stress
(MPa, tension) (MPa, compression)
Case v.=04 v.=0.5 v.=04 v.=0.5
Nominal, T=1273 K 351 475 697 847
Nominal, T =873 K 488 627 948 1107
NPR-1, compact A9 307 430 610 784
NPR-2, compact A4 449 599 895 1101

PyC Anisotropy Change Under Irradiation

Under high strains, some PyC will reorient itself and become more anisotropic leading to higher
stresses and the potential for particle failure at high neutron fluences. This phenomenon is
dependent on the initial structure of the PyC. The data, as displayed in Figures 1-5 (Tempest
1978) and 1-6 (CEGA 1993), suggests that this effect is more prevalent for lower density PyC
and/or for material produced at lower coating rates. However, this effect is not consistent with
the German irradiation database which used high density PyC produced at high coating rates
(Approximately 1.9 g/cm’ produced at high coating rates of 4 to 6 pm/ min).
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Figure 1-5. Changes in PyC anisotropy due to irradiation (Tempest 1978).
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PyC and SiC Fracture Strength
Weibull theory is widely used to predict particle layer failures. The Weibull failure probability,

Ptailre, may be expressed as:
— m
Pfailure =1- eXp ( - O¢ / Oms )

where o, is the calculated maximum stress in the material, o, is the Weibull mean fracture
strength, and m is the Weibull modulus. The parameters used in the Weibull formulation are
indicative of the flaw distribution in a given volume of a material. These values may then be
dependent upon a particular production batch of the material. Considerable variation does exist
in these parameters among various sources. Table 1-4 lists Weibull parameters from selected
sources and the corresponding stress required to reach a failure fraction of 1 x 10™. As
suggested by Table 1- 4, there is a considerable range in predicted failure levels depending upon

the choice of Weibull parameters.

Table 1- 4. Weibull parameters for particle fuel.

Material Source Weibull mean Modulus Weibull Stress
Fracture strength required for 10
(MPa) failure fraction
(MPa)
PyC CEGA 300 9.5 114
German -200 5 34
SiC CEGA 500 6 107
STAPLE (UK) 200 5 34
German (unirrad.) 834 8 276
German (irrad.) 667 6 157

PyC CTE and Elastic Modulus

The coefficient of thermal expansion (CTE) and the elastic modulus of PyC are important
material properties especially needed to describe the behavior of particle fuel during thermal
transients where differential thermal expansion of the particle layers may lead to significant
mechanical interactions. CTE for PyC is different in the radial and tangential orientations and
depends upon the anisotropy of the material. The effect of irradiation on this property is
unknown. Figure 1-7 displays PyC CTE data at various temperatures. (Martin 2001) Figure 1-8
displays the elastic modulus for PyC which is a function of anisotropy, neutron fluence, density,

and temperature (CEGA 1993).
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Figure 1-8. Elastic modulus for PyC (CEGA 1993).

Kernel Swelling

Solid fission product fuel swelling is an important phenomena at high burnups because it can
reduce the void volume within the particle which increases the internal gas pressure. Under
some conditions, fuel swelling can also lead to kernel — coating layer mechanical interaction

which may result in particle failure. Theoretical estimates (Olander 1976) of swelling range



from 0.3 to 0.45 % AV/V per atom percent burnup. However, experimental measurements
indicate larger values in the range of 0.6 to 1.5% AV/V per atom percent burnup (these larger
values may be due to intergranular fission gas bubbles). At 20 %FIMA, this amount of swelling
corresponds to a 6 to 30% increase in the volume of the kernel. For particles with sufficiently
thin buffer layers (due to the high coating rates for the buffer, this layer displays the greatest
variability in thickness among the particle layers), kernel — coating mechanical interaction may

occur. Figure 1-9 presents a STRESS3 calculation indicating such an interaction (Martin 2002).
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Figure 1- 9. A STRESS3 calculation indicating kernel — coating layer mechanical interaction.

CO Production

The release of excess oxygen in UO, fuels causes CO production to become significant at high
burnups. Existing experimental data of CO production is sparse and displays large scatter (by
over an order of magnitude). Furthermore, there are no data at high burnups. Figure 1-10
displays the Proksch correlation (Proksch 1982) which is an empirical fit to the data for excess
oxygen yield from UO, fuel and is limited to 550 full power days of irradiation (about one half
of full burnup) and displays a quadratic time dependency. Also displayed in Figure 1-10 are
historic General Atomics (GA) correlations for oxygen yield from low enriched uranium fuel

(Kovacs et al. 1985). The GA correlations depend upon only temperature. A detailed



thermodynamic model for CO production, described in the Task 2 section, has recently been

completed and is used in the PARFUME code (INEEL 2002).
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Figure 1-10. Correlations for oxygen release per UO, fission.

Fission Gas Release

Particle fuel performance evaluations almost universally use the classic Booth equivalent sphere

diffusion model for fission product gas release. Differences in this application arise from

different gas diffusivities being used. Generally, the impact of these differences on the fractional

gas release is fairly small. This is evident from Table 1-5 which lists fission gas release fractions

as calculated by PARFUME and MINIPAT (Martin 1982) which use different fission product

gas diffusion coefficients. The diffusivity used in MINIPAT is based upon the work of Horsley

(Horsley 1976) and has been also used in German coated particle fuel performance models.

Table 1-5. Calculated fission product gas release fractions.

German Fuel
8.5 %FIMA, 900°C, 3 yr irrad.

U.S. HEU NPR Fuel
79 %FIMA, 1200°C, 3 yr irrad.

PARFUME 23

.86

MINIPAT 33

95

10




1.2 Task Technical Overview - CEA

UO; Kernel

CEA brought to the INERI collaboration its experience with UO, and (U,Pu)O, fuels behavior under
irradiation. In carrying out the work, the CEA sought to establish a set of properties and models for
the kernel of the coated particle. A collection of physical and mechanical properties for UO» and (U,

Pu)O» fuels were gathered, taking into account the effects of a number of important parameters such

as temperature, burn-up and porosity. In addition, a number of fuel behavior models including in pile

densification, fuel swelling, fission gas release and CO production were analyzed.

The proposed fuel models are based upon CEA knowledge of PWR and FBR oxide fuels. Most have
been used in CEA codes for several years and have been validated. In regards to CO production, an
empirical model was developed based upon experimental data from the open literature. This model

had been used previously in other HTR codes.

Most of the properties for UO» fuel proposed below are based on measurements of sintered PWR
fuel. There is limited data for UO7 prepared by the Sol gel process. Therefore, it is recommended for

future kernel fabrications that measurements of certain properties be carried out to validate the merits

of the present recommendations.

Linear Thermal Expansion

The linear thermal expansion of UO> is given by the following expressions:

For Tx <923 K:

1
. =9.9734x 10" +9.802 x 107 Tx —2.705 x 10'°T2 +4.391 x 10°T3,
273

11



For Tx > 923 K:

lTK _ -1 -5 -9 2 - 12 3
—==99672x10  +1.179x10 "Ty —2429x10 " Ty + 1.219x10 " Ty

273

with Tk in K.

The averaged linear thermal expansion coefficient between 273 and Ty is given by:

3-Te) = (. _A73) -
CET T (1 - 273) s

The correction for substoichiometric mixed oxide fuels (O / M < 2) is as follows:

273

1. —1 I —1
(uj - [uj (1+3.9x) with: x = 2-(O/M)
1 X 273 2

Thermal Conductivity

A study of UO» thermal conductivity, available in the open literature, was recently carried out. This

study resulted in a new recommendation, inspired by the “Lucuta’s law” of 1996, which has been

validated with measurements to 1900 K. This correlation, applicable for stoichiometric UO» fuel, is

also used in the current version of the PWR rod code METEOR:

A =Kiq Klp sz Ky Ao

With:

The correlation proposed by Harding and Martin for the unirradiated UO,,

1 4.715x 10° 16.361
0( K): Ep—— 2 CXp| —
0.0375+2.165x 107*T, T;

K
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The correction due to FP in solid solution:

109 0.0643 1
Kiyg=|—=+ A Tk |arctan
“’ [r”“ Jo KJ ( 1.09  0.0643

o+ VT
T3.265 ﬁ KJ

The correction due to FP precipitates:

0.019 t 1
Ky, =1+
3—01”9’f(1+exp[_(TK-4200Jj
100

The correction due to porosity:

1-P
K, =
® 142pP
The correction due to irradiation damages:
0.2
K, =1- 1—exp(—
4r [ ((TK _ 900jj( exp( T))
I+exp ———
80
where:
A, Ao : thermal conductivity (W/(mK))
Ty : temperature (K)
T :  burn-up (at% FIMA)
P :  pore fraction /)
X : 2-O/M /)

13



4r [ [

Non irradiated
1 % FIMA
3 % FIMA
5 % FIMA
7 % FIMA

35 F

L~
A i §

\

15 |

500 700 900 1100 1300 1500

Temperature (°C)

Figure 1-11. Thermal conductivity of UO,...

Young’s Modulus

The evolution of the UO, Young’s modulus with both temperature and porosity is given by the

following equations:

For273 <Tx £2.610 K:
Eo=2.2693 x 10> - 1.5399 x 10?2 Tk - 9.597 x 10 Ty>

For Tx > 2.610 K:
Eo=-1.33445 x 10* + 1.18106 Ty — 2.38803 x 10" Ty?

The correction due to porosity is as follows:

IfP <0.3:
E=(1-25P)E,
IfP>0.3:
_1-P
T 1+6P °

14



where:

E,Ep: Young’s modulus (GPa)
Tx : temperature (K)
P : fuel pore fraction )
Models
Densification

The densification of UQO, at the beginning of the irradiation, results from sintering due to both
temperature and the fission spikes. It is the fine porosity population (® < 1.5 um), which is the result
of fabrication, that is mainly removed. The different modes of manufacture for sintered PWR pellets
and Sol gel-produced HTR kernels can lead to differences in the size distribution of the porosity.
This implies that most of empirical densification models developed from sintered fuels would not be
suitable for Sol gel fuels. The manufactured kernel density of future HTR fuel is required to be >
95%TD. Consequently, for a first approach, it is not necessary to take into consideration the in pile

densification because it is of little consequence compared to fuel swelling.

Swelling

Solid FP swelling

The fuel is considered to be an isotropic material. The swelling rate, which was determined from
density measurements, reflects the “solid swelling”. The density measurements carried out on post-
irradiated PWR and FBR fuels clearly display a linear behavior in relation to the burn-up. This solid
swelling includes not only the contribution of solid FP, but also that of the fission gas in super

saturation in the fuel, or partly precipitated as nanometric bubbles.

The solid swelling rate, SS is given by the equation:

s Y
S.=—= = 97 -0.06

odt dr
with: S, : solid swelling rate (% / GWd/ty)

15



Gaseous swelling

The fuel swelling due to gaseous fission products (Xe, Kr) results mainly in an increase of bubble
population and bubble size in the matrix and grain boundaries. The mechanisms which lead to this
swelling are complex. For this reason, gaseous swelling models are often empirical correlations
which depend only upon some parameters, the most important of which are temperature and burn-up.
Some models are available in open literature, and the CEA proposes using the MATPRO model for
HTR UQO, fuel. This empirical model simulates the gaseous steady state free swelling between 1000

and 2000 K. The gaseous swelling rate in relation to local temperature is as follows:

AN
S, =—%=2.19912 x10** (2800 - T, )"""” exp[-0.0162(2800 - T, )]

£ dr
with:
Sg : gaseous swelling rate (% / GWA/tuwm)
Tk  :temperature K

Fission Gas Release

A number of fission gas release (FGR) models are available for steady state conditions. The release
process is relatively complex, but it may be reduced to a two-stage process. In the first stage, the gas
atoms in the grain migrate by several mechanisms towards the grain boundaries. In the second stage,
the gas migrates from these boundaries to the free surfaces of the fuel and is released in the free

volume.

For its simplicity, the equivalent sphere diffusion model or Booth model is usually used to estimate
the FGR of coated particles. More refined FGR models, which are for the most part built on the
original Booth model, take into account other contributions. These include the trapping of gas atoms
by matrix defects and the resolution of gas atoms from bubbles by fission spikes. In addition, for
high burn-up there is the principle of a gas saturation threshold which leads to an increase of the

kinetic of release, even at low temperatures.

The CEA model, developed for the FBR mixed oxide fuel, accounts for fission gas release becoming

more intense when the fuel structure changes at high burn-up. This change occurs particularly in the

16



600 — 1200 °C temperature range. Consequently, this model seems better adapted for fuel burn-up in
excess of 10 %FIMA. In addition, the model takes into account an athermal diffusion of the fission
gas atoms, which dominates below 1000°C, and a gas saturation threshold which is a function of the
temperature. For the calculation of the saturation threshold, the model adopts the Speight theory
which considers that the phenomena is controlled by the resolution of the gas atoms from the bubbles
into the matrix as a result of fission spikes. The main consequence of this is the formation of an intra
and inter granular gaseous porosity, which interconnects and favors the fission gas release. Although
it is impossible to provide a comprehensive description of the model in the frame of the present

document, graphics of the CEA FGR model application are provided below:
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Figure 1-12. Limit of the gas saturation (super saturation in the matrix and in nanometer bubbles) in
oxide fuel versus the fuel temperature.
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Figure 1-13. Evolution of the fission gas release rate with the fuel burn-up.

CO Production

Several different gases contribute to the pressure build-up in the coated particle. Among them, the
CO production from the reaction between the free oxygen liberated by fissions, and the carbon of the
inner coatings may become significant. The production of free oxygen depends on the nature of the
fuel: oxide or oxycarbide and on the type of fissile material, either uranium or plutonium. It has been
proven that unlike UO,, fuels containing carbon do not produce excess free oxygen. The formulation
proposed by Homan for low-enriched uranium fuels (U < 20 wt%) takes into account the effect of

plutonium fissions on the oxygen production. It is assumed that negligible CO, is formed under

normal operating conditions.

The following equations have been proposed:
O/f=1.64 exp[-3311/T]

and
O/f hax=0.61

with:
O/f: atomic oxygen release per fission )
T : temperature (K)
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In addition to the Homan formulation, the Proksch model and the “STRESS3” model have been
investigated. The empirical expression proposed by Proksch, based on a large number of mass-
spectrometric CO measurements seems to be the best at present to describe this phenomenon. It takes
into account both the role of plutonium fissions on the oxygen production and the irradiation time.

Proksch proposes the following equations for the oxygen atoms per fission.

logio [(O / /] = -0.21 + (-8500/T)

and
O/ f nax = 0.4 fy + 0.85 fp, with a upper limit of 0.625

with:

O/f: atomic oxygen release per fission (/)

t: irradiation time (days)

T: particle surface temperature (K)

fu: U fission rate (/)

fpu : Pu fission rate (/)

In principle, the validity of the equation is strictly held only in the region covered by the supporting
experiments:

950 <0 < 1525°C

66 <t <550 days

The “STRESS3” model, proposed by D.G. Martin, assumes that the number of oxygen atoms
released during irradiation is proportional to the number of fissions occurring via plutonium. The

temperature dependence is given by:

O/ f,, =1.641 exp(—%)

For a LEU UO» fuel, the ratio between plutonium fissions and total fissions depends both on the

235U enrichment of the fuel and on the burn up.
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Figure 1-14. Atomic oxygen release per fission.

Pressure Calculation

Because the classical ideal gas law is inadequate to calculate the internal pressure of the coated
particle, a new model of pressure calculation has been included. The earlier model failed to take in
account the particular conditions which prevail inside the particle: low volume, low to high
temperature and pressure. In addition, it neglects the volume that gas atoms and molecules occupy.
As a consequence, it is necessary to use a more appropriate equation of state. Among the numerous
equations of state for gases, the model proposed by Redlich and Kwong seems to be the best adapted

for calculating gas pressure within coated particles, combining a simple formula with a high level of

accuracy.
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The Redlich-Kwong equation of state is:

a
{RT =P+ 7y (V+b)} V' -b)
where:
P: pressure Pa
V:  volume per mole m3/rnol
T: temperature K
R:  gas constant 8.31441 J/ (K mol)

“a” and “b” are gas constants whose values are obtained by noting that at critical point:
() (22) -
ovV)r lev? .

R2T2.5 RT
a= < and b:a
9EP, 3P,

implying for each gas that:

C

Values of the critical temperatures and pressures, together with the derived “a” and “b” values for the

four gases of interest (CO, CO», Xe, Kr) are given in the following table.

Table 1-6. Redlich-Kwong gas constants.

Te Pc a b
Gas 4 0.5 1 2 3

(K) (MPa) (N m* KY-9/mol <) (m*/mol)
CcO 132.91 35 1.72 2.736 x 1075
CO, 304.14 7.38 6.46 2.969 x 1075
Kr 209.45 5.5 3.411 2.743 x 1075
Xe 289.75 5.9 7.158 3.538x 1075

The coefficient “£” in the equations of “a” and “b” is equal to (21/3 —1)=0.259921.

In the case of gas mixture, mean values of “a” and “b” are required. They are given by:

2
_ n
a= {in a}/z}
i=1

n
b= in b;
i=1
where:
n: number of gas species

xj:  fraction of gas specie i
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Pyrocarbons

Pyrolytic carbons (PyCs) are key protective materials in the design of the classical HTR coated fuel
particles. PyCs are basically used for the constitution of the first porous coating (50% dense) called
the “buffer” layer and for the two “dense” layers: the inner pyrolytic carbon (IPyC) layer and the
outer pyrolytic carbon (OPyC) layer. These, in turn, enclose the silicon carbide layer (SiC) of the
TRISO particle. According to both the temperature of the pyrolysis process and the nature of the
hydrocarbon, two classes of “dense” PyC materials exist: the high-temperature isotropic (HTI) PyC
(6> 1800 °C and CH4 - Ar mixture) and the low-temperature isotropic (LTI) PyC (6 < 1500 °C and
generally C;Hg - Ar mixture). Much available data comes from the first class (HTI), because the

greatest amount of tests on these materials was performed during the 1960’s and 70’s.

Three distant sets of data may be found:

. Data from the German experience
. Data from the UK experience, especially from the DRAGON program

. Data from the U.S. experience

Density

The theoretical density of graphite material is 2.27 g/cm3. The value for 100 % dense PyC is a little

lower than this value as shown in the table below:

Table 1-7. PyC density.

Value German UK

Theoretical density (g/cm’) 2.2

Fabricated density for:

“Buffer” layer (g/cm?) 09<p<l.l1

Dense PyC layers (g/cm’) 1.8<p<2

Coefficient of thermal expansion
Very often, the data reported in the literature is not the true linear thermal expansion coefficient (o)

but the mean value (@ ) given between two temperatures T and Ty. The PyC thermal conductivity

depends on porosity and, consequently on the as-fabricated density.
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Table 1-8. PyC coefficient of thermal expansion.

Value German UK US[1]
“buffer” layer a=35 a=35 For BAF <3 (Ry < 0.8 and R3 > 0.4)
a (10 K1) And in the range of temperature around
1100°C:
dense isotropic PyC layers a=55 a=56 o =40 (Ry -1)2 +1.11
o (106 K1) a3 =-41.67 R3 + 33.33

U The parallel and normal directions are represented by subscripts 1 and 3, respectively.

Thermal conductivity

Table 1-9. PyC thermal conductivity.

Value Germany UK
1-P
A =10.98222 +0.00444
“buffer” layer A (W m1 K1) A=05 1+2P
dense isotropic PyC layers r=4 ForP=05 A=275
A (W mtK1) ForP=02 A=628
P = porosity fraction

Young’s Modulus

Values for PyC Young’s modulus are listed in the table below and plotted in the following figures.

Table 1-10. Young’s modulus.

Reference German UK
For0<D <05
“buffer” layer E (MPa)
E =7000 + 6000 D E=12,500 (1 + 0.18 @)

® (105 n/m?2>0.1 MeV)

For D>0.5 E =10,000

dense isotropic PyC layers E (MPa)

® (105 n/m2 >0.1MeV)

E =29,000 E =25,000 (1 +0.18 @)

[ Polynomial adjustment according to the German recommendation.

(2 Polynomial adjustment according to the constants of compliance used in the code STRESS 3. The Young’s modulus

is deduced from the constants by the relation: E = 1/E,;.
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Table 1-11. Young’s modulus, continued.

Value

us

Buffer layer E(MPa)
P ()

For 0.2 <P <0.6
E = 34,500 exp(-2.03 P)

Dense PyC layers :

E(MPa)

0 (°C)

p (g/cmd)

Lc (nm) **

® (10* n/m* >0.1MeV)

E = kp kgaror ke kcp krEo; and Es;= kp kgaros ke kcp kr Eo3
With:

Em = E03 = 25500

k,=0.384 +0.324 p (1.8<p<2)*
kie=2.985—0.662 Lc (2.5<Lc<3.5)*
ke=1+023 @ (4 x10%)
kr=1+0.00015 (0 - 20) (20 < © < 2000)*

kparor = 0.481 + 0.519 BAF,
kBAFO3 =1.463 - 0.463 BAFO (1 < BAFO < 2)*

* Recommended ranges of variation of the parameters

** Lc: crystallite size

Young Modulus

| —— Buffer (BNFL) ——PyC (BNFL) —— Buffer (FZ)) —PYC(F2J) |

_—

Young (Mpa)
g £

1 15 2 25
Fluence (10E25n/m2)

Figure 1-15. PyC Young’s modulus from German and U.K. sources.
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Figure 1-16. PyC Young’s modulus from U.S. source.

Poisson’s Ratio

Values for PyC Poisson’s ration are listed on the table below:

Table 1-12. Poisson’s Ratio.

Value Germany UK ust

“buffer” layer
v (/) v=03 v=021 v=023

vi2 = 0.766 R3 - 0.275
o}c;r)lse PyClayers V=03 v=021 vq3 = -0.884R; + 0.825
\%

va1 = v13 E3/E;

[1] Preferred orientation parameter, R3 in the direction normal to the deposition plane.
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Ultimate Tensile Strength
Pyrolytic carbons are generally treated as brittle materials. The scatter in the fracture strength (UTS)
is often rather large because failure starts from the defects existing inside and at the surface of the

material. The distribution density of failure “f” is given by a statistical distribution expressed in terms

==l

where 6¢q Or 6() and m are constants whose values are determined from experiments.

of a Weibull equation whose usual expressions are:

f=1-exp —an[ ° ] or f:1—exp{—

O med

Table 1-13. PyC strength parameters.

Value UK us

“buffer” layer _ _

Omed = 20 No recommendation
Omed (MPa)
“dense” PyC layers

Omed = 190 ooy = 154.46 BAF 2 - 141.1 BAF,
Omed (MPa)

m=7 m=95

oov (MPa mG/ m))
m (/)

U Linear adjustments for Gned and m versus the density according to the data from Bongartz er al (1976) on results obtained from

propylene derived PyC with densities between 1.73 to 1.95 g/cm’.

Irradiation induced creep

The irradiation induced creep rate is given by the following expression:

. dD
& =K o1 - vc(o; +03]¥
where:
K: creep constant
G1, 02 and 63. components of the stress tensor
Ve: Poisson’s coefficient for creep
dD
d_ : fast neutron flux
t

Values of the creep constant, K, display much scatter among the different sources.
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Table 1-14. PyC creep parameters.

Value German UKk us
“buffer” layer
Y K=96x1030 | K=44x102
K [MPa n m-2(E> 0.1 MeV)] _ - For 1 <p<2
v, =05 v, =04
Ve (/) K =Ko [1+238(1.9-p)]
“dense” PyC layers For 600 < 6<1300
K[MPanm2 (E>0.1MeV)]! 2 " Ko =1.996 x 10-% - 4.415 x 10-32
K=14x10" K=44x10"
3 0+ 3.6544 x 103562
P (g/cm) ve=05 ve=04 *
6 (°C)
Ve (/) Ve = 0.5

[1] data from Buckley et al (1975) used in STAPLE code.
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Figure 1-17. PyC irradiation induced creep constant K.

Irradiation induced dimensional change rate

1300

Under irradiation, the buffer and the dense PyC are exposed to a fast neutron flux causing an

irradiation induced dimensional change. The dimensional change rate is a strong function of the




initial density and initial anisotropy. A considerable number of measurements of dimensional

change in unrestrained PyC has been reported in the open literature as shown below.

Table 1-15. PyC irradiation induced dimensional change rates.

Value German " UK @
“buffer” 1 c. €y O c =¢, =-0.241 -220
HTer TAYeEr e fo i =¢,=-0176expl-1750) | exp( )
[10%° n m2 (>0.1MeV)]1
¢, =-0.1335exp(-1.5 ")
-1.12107°®* +1.851072d
Approached formula for
& =—0.077 exp(— <D)+ 0.031 the radial deformation:
“dense” PyC layers ¢, &g @ fo<4
& = 0.164253 @* - 1.64495 @°
(10 0 m (>01MeV)J 16637907 104153 @
&, =—0.036 exp(- 2.1 ®)-0.01 : T
fo>4
& = 0.472672 ®* + 2.29629
d - 15.6717

&, =—0.0225 exp(- 0.7 @)
-2110°®-810°

[1] Adjustment from German source

[2] Adjustment from the data used in the code STRESS 3 (i.e. the Williams/Shipp correlation at 1200°C for a density

range: 1.75 — 1.86)

Pyrocarbon swelling and shrinkage : data issued from FZJ and BNFL
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Figure 1-18. Pyrocarbon swelling and shrinkage: data from FZJ and BNFL.

28



The formulas below give the tangential dimensional change rate:

£,[%/(10% n/m*E > 0.18 MeV)]

&, =CT1+2CT2®

For ¢ >4 x10%n/m?, ¢,is assumed to remain constant and equal to (&, )¢=4x10%
Coefficients CT1 and CT2 can be obtained from the following equations:

CT1=CTIT2 0>+ CTIT1 6 +CT1TO
CT2 =CT2T2 6* + CT2T1 6 +CT2T0

In which coefficients CTjTi are given by:

Forj=1
CTITi = c3; BAF,> + ¢o; BAF,® + ¢i; BAF, + cg;
i= C3i Coi Cli Coi
0 -2056.865 6492.003 -6837.18 2401.046
1 4.75697 -15.01806 15.82031 -5.559754
2 2.174319x 107 | 6.850273x 10° | -7.207533 x 107 | 2.531618 x 107
Forj=2
CT2Ti = d3; BAF,® + dy; BAF,” + d;; BAF, + dy;
i= d3i d2i dli dOi
0 635.02826 -1992.5331 2084.7227 -727.22875
1 -1.4607633 4.5802947 -4.7891012 1.6699538
2 6.6869010 x 10 |-2.0855729 x 107 | 2.1688388 x 107 | -7.5212054 x 10
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Figure 1-19. Tangential and radial irradiation induced dimensional change for PyC at T =
1200° C versus fluence and BAF,,.

Silicon Carbide

As for PyC layers, silicon carbide (SiC) layers of the coated particle are deposited from a mix of
gases, most commonly, methyltrichlorosilane (MTS) with Hy/Ar. The microstructure of pyrolytic
SiC depends on temperature and rate of deposition. The [ (cubic) structure dominates, but o

phase and free silicon may be present at low (<1250 °C) deposition temperature.

Material property considerations are generally less of a problem for the SiC, compared to the
PyC materials. However, this layer plays a fundamental role for the mechanical and diffusion
resistance of the coated particle. Consequently, a good knowledge of the ultimate tensile strength
(UTS) of the SiC layer, which can be enhanced by reducing its flaws, is very important for
achieving high burn-up. In this section, the properties for pyrolytic SiC are presented.
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Thermal conductivity
Due to the silicon carbon covalent bond, thermal conductivity is proportional to the mean free
path of phonons. This is impurity, isotropy and grain boundary type-dependent. Parameters

inducing high thermal conductivity of ceramic compounds are:
« Simple crystal structure with high network symmetry
«  Mono-carbide formulation

o Elements with similar atomic weight and with few isotopes

o Covalent bonds
All of the above criteria are represented in B-SiC. However, the disparity of thermal
conductivity values may be significant. For example, at room temperature the values are about
500 W/ (mK) for a monocrystal, 200 W/ (m-K) for a self-bonded SiC and only 10 W/ (m-K) for

a bad pyrolitic SiC.

The CEA SiC thermal conductivity model was obtained by fitting data from (Price 1973) for
CVD B-SiC and is as follows:

A(T)=A+B/T+C/T*+D/T

with T(K), MW/(mK)) and A=42.58, B=-1.5564 x10*, C=1.2977 x 10’ and D=-1.8458 x10°

Thermal conductivity decreases under irradiation. A saturation phenomenon at low fluence
occurs and the selected model beyond saturation was obtained by fitting Senor data (1996) and is

given as follows:

7\'irradiated/ }\'unirradiated(T) =a- exXp (bT)

witha=3.91112x 10? and b =2.24732 x 10

To take into account the effect of porosity, a simplified correlation, A(T-p)= Ao (T)(1-p)

31



is used, where p is the porosity and A the dense compound conductivity.
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Figure 1-20. Beta-SiC thermal conductivity.

Thermal expansion

The silicon carbide thermal expansion rate is low (4-5 x 10° C") compared to refractory carbide
like WC, TiC or ZrC (7-8 x 10° C™) or oxides like Al,O; (8.5 x 10° C™") or MgO (13.8 x 10°C™").
The selected thermal expansion rate model, well adapted to B-SiC, was obtained by scanning

Popper and Mohyuddin data and is as follows (average value):
a(20°C -T) = 3.43846 x 10° + 1.19402 x 10° T —2.05716 x 10™* T?

The thermal expansion rate doesn’t change under irradiation.

Young’s Modulus

The scatter among Young’s modulus values is significant, which is typical of brittle materials.
Nevertheless, Young’s modulus decreases with increasing temperature at a rate of about one
hundred GPa between 350°C and 1000°C. The selected Young’s modulus model was obtained

from Gulden data which appears as the most consistent data and is as follows:

E(T) =432 -0.0741T + 1.541 x 10*T* - 5.401 x107'T°
+8.142x 10"°T* —5.18 x 10°°T° + 1.043 x 107'°T°

where E is in GPa.
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At room temperature, CVD B-SiC is about 430 GPa. To take into account the effect of porosity,

the empirical correlation E=E, - exp(-C-p) is used, where C = 3.12 (data available for CVD -

SiC) and p is the porosity. The Young’s modulus of pyrolitic SiC doesn’t change under

irradiation.
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Figure 1-21. Beta-SiC Young’s modulus.

Poisson’s ration

A few values for Poisson’s ratio as reported in the literature are listed in the following table.
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Table 1-16. Poison ratio for SiC.

Reference SiC Density 14

R. G. Munro o—SiC Hexoby SA 0.98 0.160
™(2500°C)

R.D. Carnahan o—SiC “pressure sintered” 0.99930 0.168
(2100°C)

Compilation Battelle Institute “reaction sintered” 0.975 0.13 t0 0.24

J. Gibson Deposition 0.18

Handbook H.O. Pierson -1996 0.142

B.0O.Yavuz et R.E. Tressler CVD B-SiC 0.13 £0.02

M.J. Slavin & G.D. Quinn “Sintered” B-SiC ~0.97 0.17

Swelling

Three different areas may be distinguished concerning the neutron-induced swelling:

o Low temperature: swelling is the result of amorphisation and the volume increase is
about 11 % for a total phase transformation.

o Intermediate temperature: swelling is moderate and is the result of Frenckel pairs or
Frank dislocation loops accumulation.

« Elevated temperature: swelling is the result of voids creation due to lacuna migration
and coalescence.

The CEA neutron-induced swelling model was obtained by fitting data from Price for

CVD B-SiC and is as follows:

« Between 25°C and 800°C :

Gl %] = -3.3283 x 10°T + 3.1133 and G = Gy.(1-exp(-0/Dy))

o Between 800°C and 1000°C :

G %] = -1.3528 x 10°.T + 1.5329 and G = Gy.(1-exp(-0/dy))

e« Between 1250°C and 1500°C :

G[%] = 0.18.(1-exp(-D/Dy)) + 1.297 x 107°.D

where T(K), ®(n/m?), E>0.1 MeV, and ®,= 0.3396 x 10* n/m’.
Between 1000 °C and 1250 °C, linear interpolation is required.

34




—— g SiC (Price) at 600 °C ——g SiC (Price) at 750 °C ——g SIC (Price) at 1000 °C g SIC (Price) at 1100 °C =g SIC (Price) at 1250 °C

1,60%

1,40%

1,20%
£ 1,00% paul
0,80%
0,60%

0,40% /f

0,20%

(%)

volumic swelling

0,00%

0 1 2 3 4 5 6 7 8 9 10
Fluence (10E25 n/m2)

Figure 1-22. Pyrolytic beta-SiC swelling.

Irradiation creep
For neutron induced creep, the classical relation between creep equivalent strain rate, equivalent
stress, and neutron flux was selected and is as follows:

£ =K, Do

creep e

where different values of K| listed below depend on temperature (and are about hundred times as

small as pyrocarbon values).

SiC T [°C] | Reference Max. fluence Irradiation K, [MPa-(n/m’)"]
type

B-SiC * 650 | Price 4.18 x 10* n/m’ Neutronic 0.2 t0 0.264 x 10™"!

B-SiC * 800 | Price 7.7 x 10* n/m’ Neutronic 0.4x10”"

B-SiC * 900 | D.G.Martin 4.62 x 10” n/m’ Neutronic 0.4x 107

B-SiC* | >1100 |CEGA Neutronic 1.82x 107!

Fracture strength
CVD B-SiC mean fracture strength value varies within the range of 60 to 3100 MPa. The wide
range of ceramic fracture strength is due to the differences in size, shape, location and direction of

the micro-defects coupled with the lack of ductility of such material. SiC displays:

» A large dispersion of results for exactly identical test specimens and
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« close correlation between fracture strength mean values and associated loading types,
specimen volume, test type (bending, crushing, bursting...).

The fracture strength is not an intrinsic feature of a given ceramic and needs a probabilistic

approach. The most useful approach is the Weibull theory, which supposes that:

o The solid is statistically homogeneous (juxtaposition of independent micro-structural
elements).

o The fracture of the least resistant element causes the total collapse of the structure.

The cumulative failure probability of ceramic material is given by the following conventional

expression:

P,=1—exp _J‘(MJ .dD

D Oop

where D is a dimension (Volume, Surface or Line), G is a tensile stress dependent of the location
(x, v, z), m is the Weibull modulus and G¢p is a characteristic strength (homogeneous to a stress

multiplied by a length to the power i/m with i = 1 (line), 2 (surface) or 3 (volume)).
Values for the modulus m, given by the literature are scattered and are dependent upon the
fabrication method of the SiC. At room temperature, m varies within the range of 1.5 to 14. For

CVD B-SiC, a recommended value is 6.

For oop, a few values are given by the literature but results are not very consistent as shown

below:
e CEGA oov = 9.64 MPa m** (m=6)
e CEA re-analysis Gov = 24.6 MPa m*** (m=5.8)

Another widely used approach is to express the cumulative failure probability as:

ORr

P, =1-exp|-In(2)-
Oy,

where o is the calculated maximum stress in the material and oy, the mean fracture strength,

which is dependent upon the specimen and its loading.
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Weibull distribution

——SiC (F2J) fiuence = 0 10E25nm2 T(°C) = 1200 sigmean = 834 MPam=8,02)
——SiC(F2J) fluence = 1 10E25n/m2 T(°C) = 1200 sigmean = 750 MPam =6,84|
——SiC (F2J) fiuence = 5 10E25n/m2 T(°C) = 1200 sigmean =414 MPam =2,16
SIC (FZJ) fluence = 5 10E25nm2 T(°C) = 900 sigmean = 510 MPam =35
——SiC(F2J) fluence = 0,15 10E25nm2 T(°C) = sigmean =572 MPam=5,89
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Figure 1-23. Weibull distribution.
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2. TASK 2: DEVELOPMENT OF AN INTEGRATED
MODEL TO EVALUATE THE MECHANISMS OF
FAILURE FOR CLASSICAL TRISO PARTICLES IN
THERMAL GAS REACTOR SPECTRUM

Responsible Lead: INEEL

Brief Discussion of Objectives:

The purpose of this task was to develop an integrated fuel performance model to evaluate
mechanisms that contribute to particle failure. Information obtained from the exchanged of
existing models and material property databases were used in this development. The existing

models were used as the basis for developing the extended model.
2.1 Task Technical Overview — INEEL

The INEEL is developing an integrated fuel performance model called PARFUME with the
objective of physically describing both the mechanical and physico-chemical behavior of the fuel
particle under irradiation. The model includes multi-dimensional failure mechanisms in addition
to the traditional pressure vessel failure. For example, studies conducted at the INEEL (Miller et
al. 2001) indicated that shrinkage cracks in the IPyC could contribute significantly to particle
failures. Much effort to date has been directed toward including this failure mechanism in the
model in addition to other multi-dimensional mechanisms, such as partial debonding between the

IPyC and SiC layers and particle asphericity.

A typical TRISO-coated particle is shown in Figure 2-1. Fission gas pressure builds up in the
kernel and buffer regions, while the IPyC, SiC, and OPyC act as structural layers to retain this
pressure. The basic behavior modeled in these analyses is shown schematically in Figure 2-2.
The IPyC and OPyC layers both shrink and creep during irradiation of the particle while the SiC
exhibits only elastic response. A portion of the gas pressure is transmitted through the IPyC
layer to the SiC. This pressure continually increases as irradiation of the particle progresses,
thereby contributing to a tensile hoop stress in the SiC layer. Countering the effect of the
pressure load is the shrinkage of the IPyC during irradiation, which pulls inward on the SiC.
Likewise, shrinkage of the OPyC causes it to push inward on the SiC. Failure of the particle is

normally expected to occur if the stress in the SiC layer reaches the fracture strength of the SiC.
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Failure of the SiC results in an instantaneous release of elastic energy that should be sufficient to

cause simultaneous failure of the pyrocarbon layers.

Numerous material properties are needed to represent fuel particle behavior in the performance
model. These include irradiation-induced strain rates used to represent shrinkage (or swelling)
of the pyrocarbon layers, creep coefficients to represent irradiation-induced creep in the
pyrocarbon layers, and elastic properties to represent elastic behavior for the pyrocarbons and
silicon carbide. The properties currently used were obtained from data that was compiled in a

report by the CEGA Corporation (CEGA 1993).

631 um

Figure 2-1. Representative fuel particle.
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shrinks and creeps elastic shrinks and creeps
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1 Gas pressure is transmitted through the IPyC
2 IPyC shrinks, pulling away from the SiC

3 OPyC shrinks, pushing in on SiC

Figure 2-2. Fuel particle behavior.

The stresses in a perfectly spherical TRISO-coated particle can be accurately predicted with a
closed-form solution. One-dimensional models such as this have historically been used to
evaluate fuel particles for potential failures caused by the buildup of internal fission gas pressure.
The coated fuel designed in the US, however, has incurred significantly greater levels of failure
than are predicted considering just one-dimensional pressure vessel failures, indicating that other
mechanisms contributed to failure of the particles. Post-irradiation examinations have revealed
the presence of radial shrinkage cracks in the IPyC and OPyC layers, partial debonding between
the IPyC and the SiC, and deviations from a spherical shape. It has previously been shown that
shrinkage cracks in the IPyC layer can contribute significantly to the failure of fuel particles
(Miller et al. 2001). This section documents the effects of partial debonding and asphericity on
particle failure probability. The results presented serve to identify circumstances where these

multi-dimensional effects may contribute to the failure of fuel particles.
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New Statistical Method

A new statistical method was developed and incorporated into the PARFUME code that treats
parametric variations in the multi-dimensional behavior of fuel particles. Multi-dimensional
behavior includes cracking of the IPyC layer, partial debonding between the IPyC and SiC
layers, and asphericity in the particle geometry. The statistical approach was needed to develop
equations that can be used to efficiently calculate stresses in a random particle, where several
design or fabrication parameters may deviate from their nominal values. These equations are
used in a Monte Carlo simulation to calculate failure probabilities for a batch of fuel particles.
The method has been used to predict failure probabilities for several experiments, considering

the effect of shrinkage cracks in the IPyC layer on fuel particle behavior.

Our initial statistical approach was to perform regression analyses using the Design Expert
program (Whitcomb et al. 1993) to produce an algorithm that predicts the stress level in the SiC
layer of particles that have a cracked IPyC. This program used response surface analysis to
develop a sixth-order polynomial that statistically fit stress data (obtained from finite element
analyses) to a high level of accuracy when variations in six parameters were considered. This
involved full-factorial regression analysis that required a total of 972 finite element (FE) analysis
runs using the ABAQUS computer program (Hibbitt, Karlsson, and Sorenson 1998). A problem
with this statistical treatment is that the number of finite element analyses required becomes
overwhelming when 1) additional parametric variations are introduced, 2) the fundamental
material properties that were used in the analyses (such as the shrinkage of the pyrocarbons) are

changed, or 3) a different failure mechanism is considered.

Therefore, an alternative method was developed that greatly reduces the number of finite
element analyses needed. The approach is to perform finite element analyses on just enough
cases to determine the effects of varying each parameter individually. The same cases are then
analyzed using a closed-form solution that solves for stresses in a normal (uncracked) TRISO
fuel particle (Miller and Bennett 1993). Finally, statistical fits are performed on the results of the
analyses and a correlation is drawn between the stress in an uncracked particle with the stress in
a cracked particle for the same parametric variations. Implementing this in the performance
model, the stress in the SiC layer of a particle having a cracked IPyC is determined by first
computing the stress for the same particle having an intact IPyC. This stress is then converted to
a stress for a cracked particle by applying the correlations. The equation used to estimate stress

in the SiC layer, which is a function of multiple parameters, is:
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where,

o(Vi Ve Vi...) = maximum stress in the SiC layer of a cracked particle as a
function of multiple parameters,

ou(Vy Vi Viy...) = maximum stress in the SiC layer of an uncracked particle for the
same parameters,

Ocip = maximum stress in the SiC layer of a cracked particle having
mean values for all parameters,

Ouy = maximum stress in the SiC layer of an uncracked particle
having mean values for all parameters,

hi(Av) = correlation function for parameter v;,

Ay = variation of parameter v; from its nominal value.

It was shown through benchmark analyses (as shown in Table 2-1) that results obtained from
using this equation correlated very well with results from the Design Expert algorithm. The two
equations were used in calculating failure probabilities for hypothetical fuel particle batches
having statistical variations in six parameters as shown in the table. The difference between the
two cases was in the size of the standard deviations for the six parameters. In these calculations,

a particle was considered to fail if the SiC layer was determined to fail.

Table 2-1. Comparison of failure probability calculations for two statistical methods.

Case Mean values and standard deviations % Failed
IPyC SiC OPyC IPyC IPyC Irrad.
thick. thick. thick. dens. BAF temp. Design New
(um) (um) (um) (10°g/m*) (°C) Expert method,
Eq. (1)
[Std. [Std. [Std. [Std. [Std. [Std.
Dev.] Dev.] Dev.] Dev.] Dev.] Dev.]
1 40 35 43 1.90 1.16 1000 0.80 0.80
[5] [5] [5] [0.02] [0.02] [30]
2 40 35 43 1.90 1.16 1000 1.24 1.18
[8] [8] [8] [0.05] [0.05] [50]
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Because the equation above does require performing several finite element analyses to develop
the correlation functions /;, using this equation still entails significant effort if a new set of
correlation functions must be developed for every batch of particles considered. This generally
is the case if the parametric mean values change significantly from one batch to the next.
Therefore, a simplified form of the equation was developed by simply setting the 4 functions
equal to one. The rationale for doing this was that the product of the 4 functions for the particles
in a batch tends to fluctuate (from particle to particle) about an average value that is very near to
1.0. The resulting equation then requires that only one finite element analysis (to calculate o)

be performed to determine the failure probability for a particle batch:

cv

O (V,sVisVise) 2 o, (V;,Vi,Vpse) (2)

uv

To evaluate the accuracy of Equation 2, results obtained from its use were compared to results
obtained from Equation 1 for four cases involving variations in six parameters (Table 2-2). A
new set of correlation equations, s, was developed for each of the four cases. It is seen that
reasonable correlations were attained in all cases. Finally, two cases were evaluated where the
number of varying parameters was increased from six to eleven, as shown in Table 2-3. Results

from these cases again show a favorable correlation between Equations 1 and 2.

Table 2-2. Comparison of failure probability calculations for new method, Equation 2 vs.

Equation 1.
Case Mean values % Failed
IPyC SiC OPyC IPyC IPyC Irrad. w/ h wo/ h
thick. thick. thick. dens. BAF Temp. functions | functions
(um) (um) (um) | (10°g/m’) ©C) (Eq.1) | (Eq.2)
1 40 35 43 1.90 1.16 1000 0.80 1.10
2 45 30 40 2.00 1.10 700 13.8 14.6
3 35 40 50 1.82 1.24 900 0.64 0.81
4 30 45 53 1.80 1.32 600 1.51 1.62
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Table 2-3. Statistical variations and results for eleven-parameter cases.

Parameter Mean value Mean value Standard
(case 1) (case 2) deviation
IPyC thickness (um) 50 40 5
SiC thickness (um) 25 35 5
OPyC thickness (um) 50 40 5
IPyC density (10° g/m") 1.8 1.9 0.02
OPyC density (10° g/m") 1.8 1.9 0.02
IPyC BAF 1.24 1.06 0.02
OPyC BAF 1.04 1.06 0.02
Irradiation temp. (°C) 700 1000 30
Creep amplification 3 2 0.2
Kernel diameter (um) 200 500 20
Buffer thickness (um) 120 100 10
Results
Case 1 Case 2
% failed, per Eq. 1 1.31 0.004
% failed, per Eq. 2 1.05 0.003

Results above indicate that Equation 2 can typically be used to produce reasonable estimates for
failure probabilities in a general batch of fuel particles. Equation 1 can be used in situations
where a more accurate estimate is desired. This approach has the capacity to treat statistical
variations in all of the design parameters for TRISO-coated fuel particles. It has been described
above in terms of fuel particles having a cracked IPyC, but should also be applicable to other
multi-dimensional behavior. It is therefore anticipated that this method will facilitate the
development of a fuel performance code that is capable of treating multi-dimensional failure

mechanisms together with statistical variations in a wide range of design parameters.

Approach for Determining Whether the SiC Fails

The correlation equations developed for particles having a cracked IPyC were programmed into
the fuel performance code. The next step was to utilize the stresses calculated to determine
particle failure probabilities in the fuel performance model. Using a fracture mechanics
approach to determine whether a cracked IPyC layer results in failure of the SiC would require
calculation of a stress intensity at the crack tip. Such a calculation is greatly complicated by the

fact that there is a material discontinuity at the interface between the IPyC and SiC layers. It is
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believed that the SiC failures will follow a Weibull statistical distribution, having a mean
strength o;,. and a modulus m. The mean strength is a function of the stress distribution and
geometry of the SiC layer, and is derived below from the characteristic strength op. In the

Weibull theory, the failure probability for the SiC is given by:

. —f(c/ay)"dV
P =1-e (3)

where,
Py=  probability of failure of the SiC,

o= stress in the SiC layer,
op=  Weibull characteristic strength for the SiC material,
m = Weibull modulus for the SiC material,

V= volume of the SiC layer.

Once finite element results are obtained from the analysis of a cracked particle, the stress
integration above can be performed using the principle of independent action (PIA) model for

treating multiaxial stress states (Nemeth et al. 1989):

[o"dV=|(c"+0+0c")dV “4)

where,

oy, 03, 03 = the three components of principal stress.
Since only tensile stresses contribute to fracture of the material, compressive stresses are not
included in the integration. Only stresses in the finite elements of the SiC layer in the immediate
vicinity of the crack tip make a meaningful contribution to the integral. The integration is
performed using stress values calculated at integration points in the ABAQUS analysis. The
minimum principal stress o, is always negative, and therefore makes no contribution. This

component is neglected in these analyses.

Based on the magnitude of stresses calculated at integration points near the crack tip, the integral

above assumes a value which can be written as follows:

I/o"”dV =g £ FOHAV =" (1) (5)
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where o, is the maximum value calculated for the stress anywhere in the volume. The integral /
is a normalized integration of the stress distribution, where the maximum stress (taken to the m

power) has been factored out. The failure probability then becomes

7o_(’m (1)/0()"1

=1-e

(6)

The fuel performance model is set up to calculate the failure probability according to the

following:
P — 1 _ e_(o_(‘ /o-m.\')m (7)

The mean strength o, is the stress level at which 63.2% of the particles would fail if all were
stressed equally, as seen by setting . = o, in Equation (7). PARFUME executes Equation (7)
in a Monte Carlo simulation by calculating a stress o for each particle and comparing that stress
to a strength o that is sampled for that particle according to the following equation (which is

obtained from Equation 7):

_ [In(=In F)]/ m
GS - O-mse (8)

where F'is a random number between 0 and 1.

The mean strength is determined by applying the condition that the failure probability calculated
by the fuel performance model per Equation (7) essentially equal that of Equation (6). This is
done by equating the exponents for the two equations and using stresses obtained from a finite
element analysis on a particle having nominal values for all parameters to determine the integral
1. The effective mean strength for the SiC layer of a particle having a cracked IPyC is then
defined to be:

O-ms = O-O /]nl/m (9)
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where the subscript # denotes a particle having nominal values for all parameters. This value for

O 18 used in the fuel performance model per Equation (7) to perform Weibull statistical

evaluations of failure on those particles having a cracked IPyC.

Flow Diagram for PARFUME Methodology

The methodology currently envisioned in PARFUME is summarized in Figure 2-3.

Input
parameters

Finite element
analysis

Perform finite element
analysis (to calculate
SiC stress) on selected
cases for particle having
a cracked IPyC.

Analysis of
nominal particle

Determine Weibull
mean strengths

Use results of analyses on
particle having nominal
parameters to determine
Weibull mean strengths for
the IPyC and SiC layers.
The SiC layer has different
strengths for the cracked vs.
uncracked particle.

A 4

Calculate SiC stress for a
nominal (uncracked)
particle (using closed-form
solution) for the same cases.

Statistical
analysis

Failure probability
determination

A 4

Input correlation equations
and Weibull mean strengths
into PARFUME.
(Correlation equations are
not needed when using

Eq.2.)

Use Monte Carlo sampling
and Weibull statistics to
determine a failure
probability for particles
having a cracked IPyC
(considering all relevant
parametric variations).
First, determine whether the
IPyC cracks. If so, then
determine whether the
particle fails.

A 4

Perform regression analysis on
analysis results.

Develop correlation equations
that convert the SiC stress from
the closed-form solution to a
stress for the cracked particle (for
any combination of parametric
variations).

Cumulative failure
probability

If the IPyC layer in a
sampled particle does not
crack, then determine

Figure 2-3. Flow diagram for PARFUME Methodology.
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»| whether the particle fails

due to a traditional pressure
vessel failure. If so, then
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Predictions for NPR Experiments

Predictions for fuel particle failure probabilities have been made for three irradiation
experiments conducted as part of the New Production — Modular High Temperature Gas-Cooled
Reactor (NP-MHTGR) program in the early 1990s. These predictions reflect the latest
pyrocarbon creep and shrinkage properties and current gas release model used in the PARFUME
code. In these experiments, fuel compacts were irradiated at the High Flux Isotope Reactor
(HFIR) and the Advanced Test Reactor (ATR) in the United States. TRISO-coated particles
containing high-enriched uranium were irradiated at temperatures between 750 and 1250 °C,
burnups between 65 and 80 %FIMA, and fluences between 2 and 3.8x10% n/m*. On-line fission
gas release measurements indicated significant failures during irradiation. Post-irradiation
examination (PIE) of individual fuel compacts revealed the presence of radial cracks in all layers
of the TRISO coating. The irradiation conditions for the experiments are summarized in Table
2-4, while the levels of cracking measured during PIE are shown in Table 2-5. The particle
dimensions, burnup, end-of-life fluence, irradiation temperature, 23U enrichment, densities and
BAF for the pyrocarbons, etc., were based on fabrication records for the fuel and on the service

conditions measured during irradiation for each experiment.

To assess the effect of temperature variability during irradiation on particle stresses, ABAQUS
calculations were performed with both the actual volume averaged temperature history and the
time averaged volume averaged temperature for NPR-1 compact AS5. The actual volume
averaged temperature for the compact varied from about 1150 to 870 °C during the experiment,
while the time averaged, compact volume averaged temperature was 987 °C (Baldwin et al.
1993). Calculated time histories for principal stresses in the SiC layer are presented in Figure 2-
4, which show that the stress histories compare closely for these two cases. These results
indicate that using a time averaged volume averaged temperature in the PARFUME predictions

is a good approximation to the use of actual temperature histories.

Included in the results shown in Table 2-5 (column 5) are the percentage of particles predicted to
have a cracked IPyC and the percentage of particles predicted to fail because of a cracked SiC.
It is seen that PARFUME predicts that the IPyC layer cracks in 100% of the particles for every
compact tested. In reality, the PIE revealed that the actual failure fractions were less than this, as
shown in the table. Based on historical literature sources, it is believed that the creep
coefficients recommended in (CEGA 1993) and currently used in the PARFUME code may be

too low, which would allow the calculated shrinkage stresses to reach too high a value before
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creep relaxation takes effect. If the creep coefficients used in the analyses were amplified by a
factor of 1.8, which is closer to values used in older performance codes (Kaae et al. 1971; Martin
2001), the number of failures in the IPyC and SiC decrease as shown in Table 2-5 (column 6).

The higher creep gives better agreement with the experimental results.

It is noted that because the ratio o.i; /o, in Equation 2 maintained essentially the same value for
all four NPR compacts (~0.79), only one finite element analysis of a cracked particle would have

been needed to generate the failure probabilities of Table 2-5.
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Figure 2-4. SiC stress history comparisons for 1) time averaged temperature vs. 2) actual
temperature in cracked and uncracked particles of NPR-1 A5 irradiation experiment.

Table 2-4. TIrradiation conditions for NPR experiments.

Fuel Compact ID Fast Fluence Irradiation Burnup
(10% n/m’) temp. (°C), average (%FIMA)
NPR-2 A4 3.8 746 79
NPR-1 A5 3.8 987 79
NPR-1 A8 2.4 845 72
NPR-1A A9 1.9 1052 64
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Table 2-5. Comparisons of ceramographic observations to PARFUME calculations for TRISO
coated fissile fuel particles.

[PyC Layer(a)
Fuel Sample Size | % Failed | 95% Conf. Calc. Calc. with
Compact ID Interval (%) 1.8x creep
NPR-2 A4 83 65 54<p<76 100 99.8
NPR-1 A5 39 31 17<p<47 100 34.8
NPR-1 A8 53 6 2<p<16 100 94.0
NPR-1A A9 17 18 5<p<42 100 14.5
SiC Layer (a)
Sample Size | % Failed | 95% Conf. Calc. Calc. with
Interval (%) 1.8x creep
NPR-2 A4 287 3 2<p<6 9.2 3.4
NPR-1 A5 178 0.6 0<p<3 1.8 0.22
NPR-1 A8 260 0 0<p<2 59 1.8
NPR-1A A9 83 1 0<p<5 1.1 0.044

a. Layer failure is considered to be a through wall crack as measured by PIE.

HRB-21 Experiment
Initial failure probabilities were also calculated for the HRB-21 experiment. Irradiation
conditions for this test are listed in Table 2-6, where it is seen that the primary differences

between the compacts are the fast fluence and the irradiation temperature.

Table 2-6. Irradiation conditions for HRB-21 experiment.

Fuel Compact ID Fast Fluence Irradiation temp.(°C), Burnup (%FIMA)
(10 n/m?) average
1C 1.5 800 14.0
2B 23 980 18.0
4A 3.5 1000 22.5

The observed and calculated failure fractions for the IPyC and SiC layers in the HRB-21
experiment are presented in Table 2-7. The calculated failures for the IPyC and SiC layers
(based on 1.8 x creep) were greatest for compact 1C and least for compact 4A, contrary to what
occurred in the tests. This suggests that the material properties used in the calculations may not
accurately represent these particles, or that there was an effect in the experiment not captured in
the calculations. Further analyses of this experiment, incorporating more exact experimental

conditions will be conducted. Since HRB-21 displayed wide temperature variations over time
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and across the compacts (much wider than that in the NPR experiments), future calculations will
first investigate the use of actual temperature histories (as opposed to the time and volume

averaged temperature used in the initial calculations).

Table 2-7. Failure fractions during irradiation for HRB-21 experiments.

IPyC Layer
Fuel Compact ID | Sample Size % Failed 95% Conf. Calc. (with
Interval (%) 1.8x creep)
1C 96 1 0<p<5 70.6
2B 70 3 0<p<9 9.7
4A 61 33 18<p<48 7.3
SiC Layer
Sample Size % Failed 95% Conf. Calc. (with
Interval (%) 1.8x creep)
1C 96 0 0<p<4 54
2B 70 0 0<p<6 0.16
4A 61 5 0<p<13 0.10

Debonding Between the IPyC and SiC Layers

The failure predictions above focus on failures associated with shrinkage cracks that develop in
the IPyC layer during irradiation. Another form of multi-dimensional behavior that may
contribute to particle failures is debonding between the IPyC and SiC layers. The statistical
methodology presented above can be used to evaluate failures caused by debonding as well as

failures caused by a cracked IPyC layer.

Partial debonding between the IPyC and the SiC has been observed in PIE of the NP-MHTGR
fuel particles. During irradiation, shrinkage of the IPyC layer induces a radial tensile stress at
the interface between the IPyC and SiC layers. If the stress exceeds the bond strength between
layers, then debonding of the IPyC from the SiC occurs. The debonding process is not likely to
be an instantaneous detachment over the entire surface of the interface. Rather, it begins at an
initiation point from which the layers progressively unzip during irradiation. An axisymmetric
finite element model for the debonded geometry is shown in Figure 2-5. The model plotted is a

deformed shape as it appears part way through irradiation, after the unzipping process has begun.
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Figure 2-5. Finite element model for a partially debonded particle.

A typical debonded particle was analyzed in a viscoelastic time-integration analysis that
progressed until the fluence reached a value of 3 x 10% n/m’ occurring at a time of 1.2 x 10" sec
in the analysis. In the ABAQUS analysis, the IPyC and SiC were initially assumed to be
debonded at an arbitrary point in the model. Continued debonding, if it occurred, then
progressed from this point. The criterion used was that the next node ahead of the crack tip
debonds when the local stress across the interface at a specified distance ahead of the crack tip
reaches the specified bond strength. Figure 2-6 shows the stress concentration that occurs in the
SiC layer at the tip of the debonded region. The stress plotted is the maximum principal stress,
which is tensile at the tip of the crack. As with a cracked IPyC, this stress concentration can
contribute to failure of the SiC. Figure 2-7 plots a time history for the maximum calculated
principal stress at a point (point 1) on the inner surface of the SiC layer along the debonded path.
The stress at this point rose to a peak as the tip of the debonded region passed through this
location. With continued unzipping between layers, the stress at this location rapidly
diminished. Also shown in Figure 2-7 is a stress history at a point further down the debonded
path (point 2). As would be expected, the stress at this point peaked at a later time during

irradiation.
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Figure 2-6. Stress concentration at the tip of the debonded region.
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Figure 2-7. Stress histories at two points along the debonded path.

To evaluate particles for potential failure due to debonding, PARFUME first determines whether
debonding occurs. It calculates the radial stress at the interface between the [PyC and SiC layers
using the closed-form solution, and compares this stress to the bond strength between layers. If
PARFUME determines that debonding occurs, it then calculates a maximum stress for the SiC
layer utilizing the statistical method described above (Eq. 1 or 3). Calculations performed herein
utilized Eq. (3), which required that only one FE analysis be performed for each batch of
particles considered. PARFUME compares this stress to a strength that is sampled from a
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Weibull distribution having mean strength o,,; and modulus m. The mean strength is calculated
from Eq. (4), where the integral /, represents a stress distribution obtained from the ABAQUS
analysis of a debonded particle having mean values for all parameters (referred to as a nominal
particle). With the moving crack tip, significant stress concentrations may occur at numerous
points along the debonded path. These stress concentrations are typically not as severe as those
at the crack tip of a cracked IPyC, but they occur over a larger portion of the SiC volume.
Because the peak stresses at these points do not occur simultaneously, caution must be exercised
in calculating /, to ensure that the stress distribution is based on the maximum stresses that occur

at any time during irradiation.

The effects of partial debonding were evaluated by performing failure probability calculations on
representative particles assuming a range of values for the bond strength between the IPyC and
SiC layers (0 to 60 MPa). The input parameters for four cases are summarized in Table 2-8.
Each value for the bond strength considered in these calculations was represented by its own
batch of particles. Within each batch of particles, the primary statistical variation from particle
to particle was a Weibull distribution in the SiC strength. Because the stress distribution in the
particle layers change with variations in the bond strength, the Weibull mean strength o;,, from
Eq. (4), which is obtained by integrating tensile stresses over the volume of the SiC, indirectly
becomes a function of the bond strength. Thus, a new value was calculated for o, for each bond
strength considered. Statistical variations of small standard deviations were applied to several of
the parameters of Table 2-8, but these had only a slight effect on the calculated failure
probabilities.
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Table 2-8. Input parameters for debonding calculation.

Parameter Units Case 1 Case 2 Case 3 Case 4
Kernel diameter um 500

Buffer thickness um 100

IPyC thickness um 40

SiC thickness um 35

OPyC thickness um 40

End-of-life 10% n/m’ 3.0

fluence

Irradiation °K 973 973 1473 1473
temperature

Gas pressure MPa 4.61

Ambient MPa 0.1

pressure

[PyC density g/em’ 1.90

OPyC density g/em’ 1.90

IPyC BAF 1.06 1.03 1.06 1.03
OPyC BAF 1.06 1.03 1.06 1.03

Results of the debonding calculations are presented in Figure 2-8, which shows failure
probabilities caused by debonding alone. It is shown that the maximum failure probability for
Case 1 occurred when the bond strength between the IPyC and SiC layers was 28.5 MPa. At
very low bond strengths, the IPyC debonded from the SiC layer, but the stress between layers
was very small. The resulting stresses in the SiC were small, resulting in low failure
probabilities. At large bond strengths (>60 MPa in this case), the radial stress between layers
was not sufficient to overcome the bond strength, and there were no failures caused by
debonding. In Case 2, the coating layer stresses diminished with a lower BAF, and the failure
probabilities due to debonding decreased. Because the radial stress between the IPyC and SiC
layers is diminished with the lower BAF, the peaks in the curve also shifted somewhat to lower
bond strengths. In this case, the maximum failure probability occurred at a bond strength of 36.5

MPa.

At the higher irradiation temperature of Cases 3 and 4, the radial stress between the IPyC and
SiC layers decreased significantly. This was the result of the higher creep coefficient for the
pyrocarbons at the higher temperature, which relieved stresses in the coating layers. These

stresses were not high enough to generate any failures due to the debonding process.
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Results of the debonding calculations show that failures caused by debonding are highly
dependent on the irradiation temperature and bond strength. Material properties such as BAF

can also have a significant effect.
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Figure 2-8. Failure probability due to debonding as a function of bond strength.

Asphericity

Another form of multi-dimensional behavior modeled in PARFUME is asphericity. The
program incorporates the effects of asphericity for particles that have a flat facet but that are
otherwise spherical. An axisymmetric finite element model for this faceted shape is shown in
Figure 2-9. A faceted geometry is typical of what has been observed in fabricated particles.
Another form of asphericity is an ellipsoidal shape, but this is not characteristic of what has been
observed. Furthermore, the effects of an ellipsoidal shape are negligible relative to the faceted

geometry. Therefore, this form of asphericity is not included in PARFUME.

The degree of asphericity for a particle is defined in terms of an aspect ratio, which is the ratio of
the major diameter to minor diameter. A reason for defining this parameter is that it is a
commonly used measure of the severity of deformity in a particle, and is thereby used as a

criterion for particle acceptability. Using dimensions shown in Figure 2-9, the aspect ratio (4) is

L 2R

= ®)
R++R*—#
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where:

A: aspect ratio for an aspherical particle, or ratio between
the major and minor outer diameters for the particle (used
to measure the degree of asphericity)

R: is the outer radius of the particle and 7 is the radius of the facet

r: radius of the facet in an aspherical fuel particle.

Figure 2-9. Finite element model for an aspherical fuel particle.

During irradiation, the faceted portion of the particle acts a flat plate that restrains the internal
gas pressure. If the pressure builds up high enough, a local region of tensile stress develops in
the central portion of the plate, which can contribute to particle failures. This is shown in the
contour plot of Figure 2-10, where tensile bending stresses in the SiC layer occur in the outer
face of the facet. Unlike failures caused by cracking of the IPyC or partial debonding of the
IPyC, which are governed by shrinkage of the pyrocarbons, failures caused by asphericity are
controlled by the internal pressure. Therefore, while failures due to IPyC cracking and
debonding tend to occur early during irradiation when shrinkage stresses are at their highest,

failures due to asphericity are likely to occur later when the internal pressure is highest.
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Figure 2-10. Stress intensification in the faceted portion of a fuel particle.

A typical faceted particle was analyzed in a viscoelastic time-integration analysis that progressed
until the fluence reached a value of 3 x 10 n/m?, occurring at a time of 1.2 x 10 sec in the
analysis. Figure 2-11 plots a time history for the principal stress in the SiC at the center of the
faceted portion of the particle. Also plotted is the corresponding time history for the tangential
stress in a perfectly spherical particle. A comparison of these stress histories shows that the facet
intensifies the stress in that local region of the particle. Depending on its severity, this stress

intensification can lead to increased particle failures.
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Figure 2-11. Stress histories for the faceted vs. spherical fuel particle.
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In evaluating asphericity, PARFUME calculates a maximum stress for the SiC layer utilizing the
statistical method described above (Eq. 1 or 3). However, a second term is added to the right
hand side of these equations to correctly estimate the maximum stress o, for an aspherical

particle, as follows for Eq. (3):

O (Vs Vis Vi) = 0"? O, (Vs Vi Vo) + A0, Ac,(V;,V, Vs (6)
where:
O: maximum principal stress in the volume of the SiC layer for an aspherical particle, MPa
Oy tangential stress in the SiC layer of an intact spherical particle, MPa

O.y.  maximum principal stress in the volume of the SiC layer for a debonded or aspherical
particle having all parameters set at mean values for a particle batch, MPa

o,y:.  tangential stress in the SiC layer of an intact spherical particle having all parameters set
at mean values for a particle batch, MPa

Av. variation in parameter v from its mean value

and Ao.y;, 40,3, and Ao, are changes in the stresses o3, 0,3, and o, in going from the first
extremum (or minimum) to the end of irradiation in each respective stress time history. If a
second extremum (or maximum) occurs before the end of irradiation is reached, then 4oy,
Ao, and Ao, are taken as changes in these stresses in going from the minimum to the
maximum. This ensures calculation of the largest value of stress that occurs anytime during the
irradiation history. In Eq. (6), o.i;, 0,3, and o, are stress values occurring at the time of the
minimum in each time history. The first term then takes the solution from time zero to the time
of the minimum in the stress history, while the second term takes the solution from the minimum
to the end of irradiation or to a maximum, whichever occurs first. The additional term is needed
for asphericity evaluations because failures due to asphericity occur after the first extremum for

o, has been reached, when shrinkage effects from the pyrocarbons are diminishing.

With the addition of a second term, Eq. (1) becomes

o
o.(vV,,vi.v)=—0,(v,,vi,V )y (Av )k (Av )k (Av))...

uv

Ao,
" Ao‘cv, Ao, (V. ViV by (AV )y (Av ) hy (Av))... (D)

uv
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The second set of correlation functions /;; is determined in the same way as the first set 4;; (Ref.

3), using output from the same ABAQUS finite element analyses.

Eq. (6) was utilized to perform the calculations described below, since this required that only one
ABAQUS finite element analysis be performed for each batch of particles considered. In these
calculations, PARFUME compared the maximum calculated stress (from Eq. 6) to a strength that
is sampled from a Weibull distribution having mean strength o,,; and modulus m. The mean
strength is calculated from Eq. (4), where the integral /, represents a stress distribution obtained

from the ABAQUS analysis of a faceted particle having mean values for all parameters.

Effects of Asphericity on NPR-1, HRB21, and German Particles
The effects of asphericity were evaluated by performing failure probability calculations on
representative NPR-1, HRB21, and German particles, using the input parameters shown in Table

2-9.

Table 2-9. Input parameters for three types of particles.

Parameter Units NPR-1 HRB21 German
Kernel diameter um 200 351 500
Buffer thickness um 102 105 95
IPyC thickness um 53 52.8 40
SiC thickness um 35 32.6 35
OPyC thickness um 39 46.8 40
End-of-life fluence 10” n/m’ 3.8 3.5 2.3
Irradiation K 1260 1273 1173
temperature

Gas pressure MPa 23.31 15.82 10.65
Ambient pressure MPa 0.1 0.1 0.1
IPyC density g/em’ 1.923 1.90 1.90
OPyC density g/em’ 1.855 1.84 1.90
IPyC BAF 1.0579 1.074 1.04
OPyC BAF 1.0515 1.038 1.04

Failure probability calculations for the three types of particles were performed over a range of
values for the aspect ratio. The only statistical variation considered among particles in a batch
was a Weibull distribution in strength for the SiC layer. Each aspect ratio considered was
represented by a batch of particles. Including statistical variations in other parameters would
likely increase the failure probabilities to some extent, but the trends should be very similar.

Only failures caused by internal pressure were considered in the calculations, which isolated the
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effects of asphericity. Because the stress distributions in the particle layers change with
variations in the aspect ratio, a new Weibull mean strength was calculated from Eq. (4) for each
aspect ratio considered. Results of the calculations are presented in Figure 2-12, where it is
shown that none of the particles were predicted to fail at very low aspect ratios (a situation of
zero failures was assigned a probability of 10°). The NPR-1 and HRB21 particles experienced
an increase in failure probability at aspect ratios greater than 1.05. The German particles,
however, showed no propensity to fail at any aspect ratio. This was due primarily to the lower

irradiation temperature and corresponding lower internal pressure for these particles.
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Figure 2-12. Failure probabilities as a function of aspect ratio for three types of fuel particles.

Effect of Asphericity on Particles Proposed for the DOE Advanced Gas Reactor
(AGR) Program

Failure probability calculations were also performed on AGR particles over a range of aspect
ratios (1.0 to 1.11) and internal gas pressures (7.3 to 32.3 MPa in increments of 5 MPa). The
input parameters for these calculations are summarized in Table 2-10. The material properties in

all cases corresponded to an irradiation temperature of 1273 °K.
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Table 2-10. Input parameters for AGR particles.

Parameter Units AGR
Kernel diameter pm 350
Buffer thickness pm 100
[PyC thickness um 40
SiC thickness um 35
OPyC thickness pm 40
End-of-life fluence 10 n/m’ 3.5
Irradiation temperature K 1273
Gas pressure MPa Varied
Ambient pressure MPa 0.1
[PyC density g/em’ 1.90
OPyC density g/em’ 1.85
IPyC BAF 1.03
OPyC BAF 1.03

Again, the only statistical variation considered among particles in a batch was a Weibull

distribution in strength for the SiC layer.

Only failures caused by internal pressure were

considered in the calculations, isolating the effects of asphericity. As before, a variation in the

Weibull mean strength across the range of aspect ratios was incorporated in the calculations.

Results of the calculations are presented in Figure 2-13, where it is evident that failures due to

asphericity are highly dependent on the pressure and aspect ratio.

The failure probability

generally increased by several orders of magnitude over the range of 1.0 to 1.11 in aspect ratio.

The high failure probabilities at the higher pressure (32 MPa) suggest that asphericity could be

very important under accident conditions.
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Figure 2-13. Failure probability of AGR particles as a function of aspect ratio and gas

pressure.
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Thermo-mechanical Particle Performance Summary

The PARFUME code, which is under development at the Idaho National Engineering and
Environmental Laboratory, has been used to evaluate the effects of layer cracking, partial
debonding (between the IPyC and SiC) and asphericity on the performance of TRISO-coated
fuel particles. Results of the studies on debonding indicate that

e Debonding occurs when the radial stress that develops between the IPyC and SiC layers,
due to shrinkage of the IPyC layer, exceeds the bond strength between layers.

e The debonding process is likely to be a progressive unzipping of the two layers that
starts at a weak point on the interface between layers.

e Stress concentrations occur at the tip of the debonded region, inducing tensile stress
components in the SiC layer that can contribute to particle failures.

e The number of particle failures that occur as a result of debonding is strongly a function
of the bond strength between layers. At low bond strengths, the layers readily debond,
resulting in low stress in the SiC layer and consequently a low number of failures due to
debonding. At a high bond strength, the radial stress between layers may not be
sufficient to overcome the bond strength, which again results in a low number of failures
due to debonding. Thus, the number of failures due to debonding is greatest at
intermediate values for the bond strength.

e The number of failures caused by debonding is also strongly a function of the irradiation
temperature. At high temperatures, the creep in the pyrocarbons tends to relax stresses
caused by shrinkage, which can in turn greatly reduce the number of failures that would
occur due to debonding.

e Material properties such as the anisotropy of the pyrocarbons as measured by BAF can
also have a measurable effect on the number of failures caused by debonding.

Results of the studies on asphericity indicate that:

e Asphericity is likely to have its greatest effects for particles that have a faceted
geometry. The faceted portion of the particle acts as a flat plate that can incur tensile
bending stresses as the gas pressure in a fuel particle builds up, which can contribute to
particle failures.

e The number of particle failures caused by asphericity is strongly a function of the
internal pressure. The stresses in the faceted portion of a particle are highest when the
shrinkage of the pyrocarbons diminishes and the internal gas pressure increases.

e The number of particle failures due to asphericity is also largely dependent on the degree
of asphericity, as measured by the aspect ratio for the particle (the ratio between major
and minor outer diameters).

e Failure predictions for fuel particles from the NPR-1 and HRB21 experiments showed
that these particles experienced a significant increase in failures (relative to spherical
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particles) at aspect ratios greater 1.05. Meanwhile, predictions for German particles
showed no increase in failure probability at any aspect ratio. This was attributable
primarily to a lower irradiation temperature, and a corresponding lower internal pressure
for these particles.

e Predictions were made over a range of aspect ratios and gas pressures for particles from
the proposed AGR program. These showed that the failure probability typically
increased by several orders of magnitude over a range of 1.0 to 1.11 in aspect ratio. The
large failure probabilities predicted for an internal pressure of 32 MPa suggest that
asphericity could be very important under accident conditions.

Equation of State

The Redlich-Kwong equation of state has been incorporated into the PARFUME code. It
consists of the same formalism and gas specie mixing rules as used by CEA (presented later in
this section). However, slight differences exist in the values of critical temperatures and
pressures used to derive the Redlich-Kwong constants a; and b;. Values of critical temperatures,
pressures (Reid, Prausnitz, and Poling 1987) and the derived constants as used in PARFUME are
presented in Table 2-11.

Table 2-11. Parameters used in PARFUME’s Redlich-Kwong equation of state.

Gas Critical Temp. | Critical Pressure | Redlich-Kwong Redlich-Kwong
T. (K) P, (MPa) Constant a; (Nm*K"/mol®) | Constant b; (m*/mol)
CO |1329 3.50 1.720 2.737x 10°
Kr 209.4 5.50 3.412 2.744 x 107
Xe 289.7 5.84 7.234 3.576 x 107

A comparison of internal gas pressures as calculated by the Ideal Gas Law and by the Redlich-
Kwong equation of state is presented in Figure 2-14. This comparison considers a 502 pum
diameter, 16.7 % enriched UO, fuel kernel irradiated to 20 % FIMA that contains 3.67 x 10~ g-
mol CO, 4.49 x 10® g-mol Xe and 1.02 x 10® g-mol Kr. For this case, the Redlich-Kwong
equation of state determines internal pressures that are slightly more than 20 % higher than those

determined by the Ideal Gas Law.
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Figure 2-14. Comparison of particle internal pressure as calculated by the Ideal Gas Law and
by the Redlich-Kwong equation of state for a representative 502 um diameter UQO, fuel particle.

CO Yield Model Input Criteria

A detailed thermochemistry model based on the HSC thermochemical free energy minimization
code was used to determine the free oxygen released per fission and the corresponding CO
production (Petti et al. 2002). These calculations were done over a range of burnups,
temperatures, enrichments, and UO, + UC, compositions that might be considered for TRISO-

coated fuel.

One of the input parameters to the HSC CO yield model, as implemented in the PARFUME
code, is the fraction of UC, used, along with UO,, to produce the UC,O, fuel being analyzed.
This particular fraction, as used in the model, assumes no lost or gain of constituent atoms,
which dictates that the sum of x and y is two. However, during fabrication of UC,Oy fuel, a
partial pressure of CO is used to control composition whereby the sum of x and y is not
necessarily two. Due to this composition influx and the complex U-C-O phase equilibrium,
simple scaling from the initial to final (or vice versa) mixture is not possible. Furthermore, since
initial UC, fractions are generally not reported (in QC data reports or test reports) in the
description of UCO fuel (but final carbon to uranium and oxygen to uranium ratios are), some
criteria must be established regarding the use of reported atom ratios as input to the HSC CO

yield model.

Considering the simple scaling as used in the HSC model implies that:

UCXOY = f(UCz) + (1 —f) (UOZ) = UCQfOQ(]_ﬂ
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where x = C/U = carbon to uranium atom ratio
y = O/U = oxygen to uranium atom ratio
f = fraction of UC, in the UC,Oy fuel.

Solving for the UC, fraction, f, yields:
f=®2)=1-(y2)
which may result in two different values. Using the following NPR QC data as an example,

x=C/U=03618
y=0/U = 1.5098

two UC, fractions are determined as:

f=0.3618/2 = 0.181 and
f=1-(1.5098/2) = 0.245.

Since it is more conservative to calculate a higher CO yield, a lower UC, fraction would be used
in the HSC model. This implies that performance calculations (PARFUME) for NPR fuel would
use a conversion of the carbon to uranium ratio, x, as input for the UC, fraction. The HSC
model input criteria then can be stated as: On input, PARFUME will test for the lowest derived
UG, fraction and use it as input to the HSC model. Also on input, “out of bounds” UC, fractions

greater than one will be flagged and set equal to one (as for UCs 450, 75 fuel used in OF-2).

SiC Thinning

INEEL investigated the effects on particle behavior from thinning of the SiC layer, which would
be caused by interaction of fission products with the SiC. This was done by performing finite
element analysis on a typical AGR fuel particle using the ABAQUS program, where elements in
the thinned portion of the SiC layer were effectively removed from the model. This was
accomplished by either simply not including these elements in the model (Figure 2-15), or by
substantially decreasing the stiffness of the affected elements at the time that the material is
removed during irradiation. Several configurations were considered involving variations in the
depth or width of the thinned region. Results of the thinning analysis show that stress
concentrations occur during irradiation at the edges of the thinned region. As with a cracked
IPyC or a partially debonded IPyC, these stress concentrations include tensile stress components
that reach a maximum value early during irradiation, due to shrinkage of the pyrocarbon layers
(Figure 2-16), red curve). Once creep in the pyrocarbon layers takes effect, then these stress

concentrations diminish rapidly. The red curve of Figure 2-16 was based on eliminating the
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thinned elements (to a depth of 1/6 the wall thickness) from the beginning of the solution. The
green curve of Figure 2-16 was based on thinning the wall to a depth of one-half the wall
thickness in three steps (1/6 the thickness in each step at time intervals of 4x10° s). When the
first step of wall thinning was applied (at time 4x10° s), the green curve suddenly rose to a value
that nearly meets the red curve. This tendency was observed in other cases where thinning was
applied in stages. This suggests that the maximum stress due to thinning may be obtained by 1.)
determining the time at which stresses reach a peak value due to shrinkage of the pyrocarbons,
2.) determining how much thinning has occurred at that time, and 3.) solving for stresses at that
time in an ABAQUS analysis assuming that level of thinning from the start of the analysis.
Failure probability calculations performed for AGR particles having a locally thinned SiC layer
showed that resulting failure probabilities were of the same order of magnitude as those
associated with a cracked IPyC. It was also shown that either deepening or widening the thinned
area increased the failure probability, but that widening the thinned area had a more significant

effect.

Figure 2-15. Finite element model of an SiC layer having a thinned region.
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Figure 3-16. Stress histories for local stress in thinned region of SiC layer.

This is illustrated by performing finite element analyses on an AGR fuel particle using the
ABAQUS program, where elements in the thinned portion of the SiC layer were removed from
the model. In these analyses, the irradiation temperature was assumed to be 1173K, and the
internal gas pressure was assumed to reach 30 MPa. The configurations shown in Table 2-12
were considered, which involve variations in the depth and width of the thinned region.
Included is a case where the SiC is thinned at several locations, representing the situation where
fission products attacked the SiC in several areas. As discussed in the first quarter 2004 report,
stress concentrations occur during irradiation at the edges of the thinned regions. These include
tensile stress components (typically peaking early during irradiation due to shrinkage of the

pyrocarbon layers) that can contribute to particle failures.

The results in Table 2-12 show that widening the thinned area more strongly increases the
particle failure probability than does deepening the thinned area. In the case “Narrow 57, an SiC
layer that was thinned through 5/6 of its thickness in a local area had a failure probability of
4.8x10™. In the case “Narrow 3”, an SiC layer that was thinned through 2/3 of its thickness in
several locations had a failure probability of 9.7x10”. These results indicate that the SiC layer
can sustain a significant amount of thinning in local areas without failure. It is planned to use
results from analyses such as those of Table 2-12 to establish a simplified failure criterion for

particles  that undergo  thinning of the SiC layer during irradiation.
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Table 2-12. Calculated failure probabilities for several configurations of a thinned SiC layer.

Model Label Size, depth x width Failure Probability
(um)
Base Case 5.8 X 104 1.78 x 10™
Deep 11.7 x 104 3.00x 107
Wide 5.8x279 1.62x 107
Narrow 1 233x 17.4 9.38x 10°
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Table 2-12., continued

Model Label Size, depth x width Failure Probability
(um)
Narrow 2 23.3x34.8 2.65x 107
Narrow 3 23.3 x 34.8, 5 places 9.70 x 107
Narrow 4 23.3x52.2 7.11x 107
Narrow 5 292x52.2 4.82x10™
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SiC Swelling

The INEEL also studied the effect on particle stresses from swelling in the SiC layer. To do this,
an ABAQUS finite element analysis on an AGR fuel particle was performed, where the SiC was
assumed to swell steadily throughout irradiation to a final value of 1% volumetric swelling.
Figure 2-17 compares the calculated stresses for the IPyC and SiC layers to those for the case of
no swelling in the SiC layer. Peak magnitudes for the IPyC stress and SiC stress increased from
184 to 193 MPa and from 310.9 to 326.8 MPa, respectively. The magnitudes for the IPyC and
SiC stresses at end-of-fluence increased from 40.6 to 50 MPa and from 90.4 to 106.1 MPa,

respectively.
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Figure 2-17. Stress histories showing the effect of 1% swelling in the SiC.

Enhanced Thermal Model

INEEL enhanced the thermal modeling capabilities of the PARFUME code. These new
capabilities allow the time-dependent prediction of temperature profiles through TRISO-coated
fuel particles. The fuel temperatures can be calculated for particles embedded in either pebble
bed spheres or prismatic block cores (as specified by the user) based on fuel particle positions
determined internally through statistical sampling. Both steady state and transient models of
pebble bed spheres and prismatic block cores were completed to facilitate calculation of the fuel
temperatures. Those models are depicted in Figures 2-18 and 2-19. As indicated in Figure 2-18,

the pebble bed model is a spherical representation of an unfueled shell and a central fueled
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region. The outer boundary of the model (corresponding with the outer surface of a pebble) is
assumed to be at a user specified irradiation temperature. The prismatic model is a cylindrical
representation of an outer-fueled region and a central unfueled region based on a hexagonal unit
cell approach as shown in Figure 2-19. The inner boundary of the model (corresponding with the
surface of a coolant hole) is assumed to be at a user specified irradiation temperature. Both
steady state and transient algorithms were needed in both models because user specified

irradiation (boundary) temperatures may be time dependent.

The modeling approach involves calculating pebble bed or prismatic temperature distributions (as
appropriate), assignment of fuel particle surface temperatures based on interpolation within
pebble bed or prismatic distributions at statistically-determined particle positions, and then
calculation of particle temperature profiles for assigned surface temperatures. Predicted fuel
particle temperatures have also been applied to all appropriate interfaces with existing pressure,
stress, and fission product release models. Improved prediction of fuel particle performance is

assured as a result.
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Graphite (unfueled)

Graphite + fuel

(a) Cross-section of pebble bed sphere

Boundary set at user ——»
specified irradiation temperature

Graphite + fuel (smeared)

Graphite (unfueled)

(b) Spherical model for pebble bed

Figure 2-18. Pebble bed thermal model used in calculating TRISO coated fuel particle
temperature profiles.
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(a) Cross-section of hexagonal unit cell for prismatic core

Boundary set at user
specified irradiation temperature
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(due to symmetry)

Graphite (unfueled)

Graphite + 2 fuel holes
(smeared)

(b) Cylindrical model for prismatic core

Figure 2-19. Prismatic core thermal model used in calculating TRISO-coated fuel particle
temperature profiles.
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Additional improvements to the PARFUME code include modeling to allow the (potential)
development of a gap between the buffer and the IPyC. Simulating the potential development of a
buffer/IPyC gap was built into the fuel particle thermal models as outlined below.

The potential for development of a gap was assumed to be due to the net effects of kernel
swelling, buffer shrinkage and creep, the associated kernel/buffer contact pressure, and IPyC
shrinkage and creep. These effects were incorporated into the thermal models because
development of a gap and changes in (kernel, buffer, and IPyC) geometry will impact particle

temperature profiles. Accordingly, the thermal solution now includes:

1. Time-dependent prediction of a temperature profile through a pebble bed sphere or a
prismatic block core (as defined through input) for an irradiation boundary
temperature and a fuel element power (as specified by the user)

2. Statistical determination of a particle position within the fuel element

3. Interpolation within the fuel element profile at the particle position to determine a
particle surface temperature

4. Calculation of particle temperature profiles at each step in an irradiation history
based on:

- Particle power and surface temperature
- Kernel swelling as a function of burnup

- Buffer displacement, accounting for buffer shrinkage and creep as a function of
fluence and temperature

- Kernel/buffer contact pressure as a function of fluence, temperature, and
geometry

- IPyC displacement, accounting for IPyC shrinkage and creep as a function of
fluence and temperature

- CO production and release into the gap as a function of burnup

- Fission gas production and release into the gap as a function of burnup and
temperature

- Pressure of gases in the gap as a function of temperature and geometry
- Material thermal conductivities as a function of temperature

5. [Iteration within step 4 until particle temperature convergence is achieved.
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It should be noted that the gap thermal conductivity is calculated as a function of released fission
gas mole fractions and the gas temperature and pressure. In addition, kernel and buffer densities
are modified as the geometry changes with the limitation that the buffer cannot shrink to a density
above its theoretical value. Buffer conductivity is allowed to increase as densification proceeds,
although the temperature-dependent conductivity of the kernel is not currently modified as a
function of density change. The code keeps track of particles that undergo complete buffer
densification. The code also tracks particles where gap closure occurs (i.e., when kernel swelling

is sufficient to force the shrunken buffer against the IPyC).

An example of a fuel element temperature profile (as determined for step 1) as a function of
particle power is shown in Figure 2-20. In this case, a prismatic block core was subjected to a
constant irradiation temperature of 1273 K. Fuel compacts 12.46 mm in diameter were assumed

to contain 171,260 fuel particles per meter of length. Diameter of the fuel kernels were 350 um.

Prismatic Block Temperatures
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Figure 2-20. Temperature profile through a prismatic block core as a function of particle power.
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The corresponding fuel particle temperature profile as a function of particle power is shown in
Figure 2-21 as an example of the results from step 4. In this case, however, buffer creep,
kernel/buffer contact pressure, and IPyC displacement were ignored to allow extension of the
calculations to high power. If those effects are included, code numerical overflow failures can

occur due to high pressure as the power increases.

Temperature gradients across the kernel, the buffer, and the balance of the particle are illustrated
in Figure 2-21. However, temperature drops across the OPyC, SiC, and IPyC layers are
negligible. Consequently, the gradient from the buffer outer surface to the OPyC outer surface as
shown is effectively due to the presence of a gap between the buffer and the IPyC. Clearly, the

gap AT can be a significant factor in the particle thermal response.

Particle Temperatures
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Figure 2-21. Fuel particle temperature profile in a prismatic block core as a function of particle
power.

An example of gap development predicted by PARFUME as a function of burnup and particle

power is shown in Figure 2-22. Fluence has a strong impact on gap growth (through buffer
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shrinkage) and lower power particles accumulate the greatest fluence because of the longer time
associated with accumulating the specified burnup. Consequently, gaps tend to decrease with
particle power. Kernel centerline temperatures increase with gap growth as shown in Figure 2-
23. High power, very accelerated irradiations can lead to large gaps and high kernel centerline

temperatures even at relatively low burnups.
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Figure 2-22. Gap development in a prismatic block core as a function of burnup and particle
power.
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Figure 2-23. Kernel centerline temperatures in a prismatic block core as a function of burnup
and particle power.

The capacity to calculate release rate to birth rate (R/B) of gaseous fission products are included
in both the Monte Carlo and multiple integration routines of PARFUME. The calculation
accounts for gas release from failed particles and uranium contamination in the fuel matrix.
Connecting the R/B model to the integration routine requires that the differential failure
probabilities computed in the routine be resolved into incremental probabilities over the time of

irradiation. This enables the calculation of time histories for the R/B.

Figure 2-24 presents a comparison of time histories for R/B of Kr-85m as calculated by the
Monte Carlo and integration routines, showing close agreement between the two methods.
Particle parameters used in this calculation corresponded to those of an HFR-EU1 particle, with
an irradiation temperature of 1223 K, end-of-life burnup of 20% FIMA, and end-of-life fluence of
5.4x10* n/m*>. The Monte Carlo analysis was performed on a statistical sample of 200,000
particles. The agreement between the two methods improves as the size of the Monte Carlo

sample increases.
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Figure 3-24. Comparison of (R/B) time histories, integration vs. Monte Carlo.

2.2 Task Technical Overview — CEA:

The simulation code, called ATLAS (Advanced Thermal mechanicalL Analysis Softfware) was

developed with the following objectives:

To quantify, by a statistical approach, the failed particle fraction of a loading (experiment,
core) at a given time step for normal and accident conditions. Results can be directly used
to verify safety analysis failure fraction requirements.

To evaluate, by a statistical approach, the fission product release fraction of a loading
(experiment, core) at a given time step for normal and accident conditions. Results can be
used as input data for fission products transport codes.

The methodology is made up of three steps:

deterministic calculations of different types of free particles, using a finite element
method. The models are one-dimensional for intact particles or particles with fully
debonded layers and are two-dimensional for cracked, partially debonded or irregular
shaped particles. Temperatures, displacements, stresses, strains and fission product
concentrations are calculated for each node of the model,

deterministic calculations of a fuel element,

statistical processing of the above results taking into account ceramic failure mode, but
also fabrication, material property and core data uncertainties.
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Thermal and mechanical models

A particle and an additional layer around the particle simulating the particle environment are
modeled. A finite element method is used whereby a thermal calculation determines the
temperature field in the meshing nodes and a mechanical calculation determines the

displacements fields, stresses and strains in the meshing nodes.

Figure 2-25. Finite element models (1D, centric 2D, excentric 2D).

Thermal models

The thermal models determine heat transfer in the particle. The layers can be bonded or not. In
the TRISO models, the meshes between the kernel and the buffer and between the buffer and the
IPyC simulate a gaseous joint. The size of this joint is determined by the mechanical computation
and, in case of contact, this joint is low enough (0.1 um) to have a negligible effect on the thermal
computation. The boundary conditions of these models are twofold: a condition of nil flux on
each side of the model and an imposed temperature on the particle external surface nodes. The
conductivities of the layers, the kernel and the gaseous joints are re-calculated at each time step

and depend on the temperature, the fluence and the porosities (fabrication and gaseous).

The thermal loading has two components:

o the power released by fission in the kernel, and

e the imposed temperature to the model. This is the temperature of the external surface of
the outer PyC layer.
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Figure 2-26. Temperature distribution in the particle.

Figure 2-26 presents an example of a thermal computation in which the pyrocarbon shrinkage
creates a gap between the buffer and the IPyC layer. For this case, the gap involves a temperature

step of a few tens of degrees.

Mechanical model

Consideration of irradiation-induced creep, the level of dimensional change during irradiation and
formation of gaps between layers involve the use of nonlinear viscous elastic and large
displacement resolutions. The non-linearities are of three types: first, the material non-linearity
through irradiation creep laws, second, the geometrical non-linearity through a contact condition
between each interface if needed (especially between kernel and buffer and between buffer and
IPyC) and third, the large displacement resolution method. The dense layers can be connected to
each other or not. The main characteristics of the model are as follows:

e the thermal load is the temperature field resulting from the thermal calculation,

o the pressure load is calculated at each time step from the free volume, the temperature
and the quantity of gas present:

Vfree = Vker nel Pker nel gker nel + Vbuﬁér ’ Pbuﬁ%r : é:buﬁér + Z Vgup

with V the volume of the deformed mesh, P the porosity and & the open porosity fraction.
The Redlich-Kwong equation of state is used
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RT= {P+ %}(V ~b)
T2V (V +B)

with P the pressure (Pa), V the volume (m’), T the temperature (K), R the gas constant
(8.3144 J(K™")(mol™), and “a” and “b” are gas constants depending on the gas species
(Xe, Kr, CO, COy,).

e the loads imposed by the swelling of the kernel and the irradiation-induced dimensional
change (IIDC) of the layers are considered as loads of imposed deformation type. These
are taken into account by making an analogy between swelling and thermal expansion.

Diffusion model

The model for migration of long-lived fission products in the coated particle and more generally
in the fuel element (pellet or compact) , is intended for aims at estimating the source term of the
fission products released in normal operation or in accident conditions. All the transport
mechanisms are simplified in a single transport law using effective diffusion coefficients for the

fusion product (FP) species in the different constitutive materials.

The modelling consists of solving numerically the 2™ Fickian equation which is expressed in

spherical geometry by the three term expression:

o _pen| 2 206
ot or r or

}— AiC +4;
where D& represents the effective diffusion coefficient of the specie i, generally given as an

Arrhénius type equation as a function of temperature and globalizing the mechanisms of transport

in each of the represented layers ; §; and A; represent respectively the fission generation rate and

the radioactive constant for the considered isotope.

The generation of the main fission product isotopes (137Cs, 34¢cs, s, llOmAg, 8K, ...) are
expressed in ATLAS by analytical equations which were determined by APOLLO2 and
DARWIN/PEPIN calculations representing a HTR core loaded with LEU fuel for **U

enrichments between 10 and 20%.
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Figure 2-27. """"Ag production.

Diffusion coefficients have been chosen based upon an evaluation performed under the frame of
the HTR-F project. A common assumption is the neglect of any effects of sorption or trapping
within a coating layer or any preferential retention in a specific layer. As a consequence, in spite
of the observation in microprobe analysis of certain discontinuities in concentration of caesium in
the buffer / IPyC interface and of palladium in the [PyC / SiC interface, the partition coefficients

are assumed to be one.

The simulation of fission product migration considers three types of particles in the fuel element:
intact particles at the beginning of the irradiation which are modelled in one dimension, particles
with broken SiC layers where the diffusion coefficient is multiplied by an adjustable factor and

finally, particles with exposed kernels.

This preliminary model may evolve as new information becomes available from future

irradiations and subsequent post- irradiation examinations.

Statistical approach

Particle failure probability analysis is supported by:

e aprobabilistic model,

e one or more failure criteria, which include stress-loading limit, existence of a failed
layer, existence of separation of dense layers...,
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e fabrication, material property, and core data uncertainties.

Probabilistic modelling, used by the CEA for coated particles, is based on the "Monte-Carlo"
method. This method has the advantage of including probability error control, yet requires a large
number of calculations (10° to 10%). The complexity of the thermal and mechanical models used

by ATLAS make the application of this method difficult.

Different probabilistic approaches based on the same mechanical models, but that are more
efficient in terms of the number of calculations to be performed have been studied by the CEA. .
The importance sampling technique, which is one of the variance-reducing techniques in Monte

Carlo methods, is notable.

The ATLAS code is being integrated with a unique Pleiades “platform”, which can be used for all
types of reactor fuels. Pleiades is a software platform under construction which will allow all
available fuel models, independent of the reactor type (fuel geometry, irradiation conditions...) to
be used. After this integration, code development will continue allowing multi scale simulation

(from particle to compact) and statistical calculations to be performed.

The ATLAS code includes German, UK and CEGA layer properties. Currently, the code uses a
deterministic approach for the calculations of stresses and strains in the coated fuel particle. The

main investigations, which have been carried out during the I-NERI collaboration, are as follows:

¢ Tests and comparison with analytical solutions
e HFR-P4 calculations
e HFR-EUI calculations

e CRP6 benchmark calculations.

Tests and comparison with analytical solutions

Comparison between analytical solutions from INEEL (analytical solution for stresses in TRISO-
coated particles (Miller 1993)) and ATLAS calculations have been performed. The considered
cases take into account irradiation-induced creep, irradiation-induced dimensional change rate

(see Figure 2-28) and linear increase in pressure.
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Table 2-13. Five comparison cases.

Test 1 Test 2 Test 3 Test 4a Test 4b
Layers (+buffer) 1 3 3 3 3
Creep No No Yes Yes Yes
Dimensional change No No No Yes Yes
Pressure Yes Yes Yes Yes No
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Figure 2-28. Geometry for comparison cases.

Boundary and continuity conditions between layers are:

O, _ IPyC(’ﬁZ ) = Bnterne
O-r_[PyC(,/é ) = O-r_SiC(}/E’a) ; Urﬁ]PyC(}%) = UriSiC(,/é)
O-r_SiC(nl) = O-r_OPyC(nl) ;UriSiC(nl) = UrﬁOPyC(nl)

O, _ OPyC(,% ) = PExterne

Taking into account these boundary conditions leads to a differential system:

d(o-rl)
=h()+ 4 -0, + B -0,
dt
d
(ZO) =g)+4-0,+B -0,
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In order to solve these equations, the pressure history and the irradiation-induced dimensional
change rates must be known. Moreover, h(t) and g(t) are third degree polynomials.
Finally:
O_rI - q 'eml-t+C2 'emz't‘i‘ko +kl 't+k2 't2+k3 't3
oo=D -€""+D -+ L+l t+L-2+L -
3 . ’/2‘_3

2 7
O = 0,0 t+ m [ Pevterne + Oro — 3 F- ln(;)] +

F
3
In order to calculate the PyC inner surface tangential stress, a hypothesis of elastic thick shell is

assumed and stresses are as follows:

K25+ 1) w25 +R)

2.8 --r) 28 -r)

Or = O, °

Results of the calculation are shown in the table and figures below.
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Figure 2-29. Dimensional change.
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Table 2-14. Comparison between ATLAS, ABAQUS (Miller) and Miller’s solution (EOI).

Inner surface tangential stresses (MPa)

Analytical solution ATLAS solution ABAQUS (INEEL)
OPyC 51.36 52 51.35
SiC -47.7 -38.3 -47.51

Contraintes Orthoradiales sur la surface interne du OPyC

100

(MPa)

80

60

- - @- - ANALYTIQUE
40 —%—ATLAS

20

Fluence (10E25 n/m?)

-20
0 0.15 0.3 0.45 06 0.75 0.9 1.06 12 1.35 15

Figure 2-30. OPyC inner surface tangential stresses.
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Figure 2-31. SiC inner surface tangential stresses.

HFR-P4 calculation

The document issued under of the 5°FP presents the first deterministic thermal and mechanical
calculations on a free particle using the ATLAS.V1.0 code. These calculations were based on the
HFR-P4 experimental irradiation of little pebbles in the HFR reactor. Two material property sets,
from Germany and the UK, were used. The thermal and mechanical behavior of the particle under
irradiation is a complex phenomenon with many parameters. The different property sets led to

rather different results, from both a thermal and mechanical point of view.

These calculations helped identify the following important parameters:

e The deformation kinetics under rapid change of the pyrocarbon layers particularly at the
beginning of irradiation.

e The irradiation creep coefficient of the PyC layers, and also that of the SiC,
e The layer failure mode

e The behavior of the buffer. Here it would be useful to know its structural evolution as
well as its conductivity under rapid dimensional change
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Knowledge of these properties would be an important step in the design and understanding of the
in pile behavior of future fuels. This may entail the re-interpretation of past experiments as well

as conducting new irradiation experiments specially for measuring material properties.

Layer tangertial stresses
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Figure 2-32. Layer tangential stresses with German set of data..

HFR-EU1 calculations, including first considerations on statistics

HFR-EU1 will be irradiated in the High Flux Reactor (HFR) at Petten, Netherlands for the
European project HTR-F. The purpose of this experiment is to explore the fuel performance
potential up to 20 %FIMA. The ATLAS code has been used to make fuel particle failure
probability predictions. The irradiation conditions and particle parameters used in these
calculations are summarized in the table below. Kernel properties, German layer properties and

the models described previously were used for the calculations.
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Table 2-15. Input parameters for HFR-EU 1 experiment.

Parameter Units Value Standard Deviation
General particle data
O/U ratio atom ratio 2
C/U ratio atom ratio 0
U-235 enrichment weight % 16.7
Kernel diameter um 501 10.8
Buffer thickness pm 92 14.3
IPyC-SiC-OPyC thickness um 38 33 -41 34 19 338
Kernel density g/em’ 10.85
Buffer density g/em’ 1.01
[PyC/SiC/OPyC density g/em’ 1.9 32 187
IPyC- OPyC BAF 1.02-1.02
Irradiation conditions
Irradiation duration effective full power days 600
End-of-life burn-up % FIMA 21
End-of-life fluence 10% n/m™ (E > 0.18 MeV) 5.4
Ambient pressure MPa 0.1
400
300 //_ I"“ inn;r skin-IPyC I
o) — —=
/ |o0 inner skin OPYC |
& 0
S 100
2 200 ! — "
% -300 \ : -
& 400 \ Gg inner skin SiC
-500 \\
-600
-700 \
-800

0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%
Burn-up {%FIMA)

Figure 2-33. Tangential stress history for the mean particle.
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Figure 2-33 presents the tangential stress history for the mean particle. A statistical approach
taking into account the kernel diameter and layer thickness variation has been made. Only one
mode of failure corresponding to SiC layer failure is considered(with the PyC layers staying
intact until the SiC layer fails). The failure probability, F, of the SiC layer is given by a Weibull

distribution, which is a function of the maximum tangential stress ¢ in the layer:

71n(2).[ ° ]m
Gm

F(o)=1-e

at 1100°C: o, = 834 —57.10 (MPa), m=8.02—0.425 ®, ® fast neutron fluence (10 n/m™).

To evaluate the mean failure probability, a Monte-Carlo method has been used:

E(F(AXX) = ~ Y FA(X,)

n—e n o
where A is the ATLAS code response giving the maximum stress as a function of the particle
layer thickness X (o = A(X) ). As the structure of the ATLAS model is not adapted for direct

Monte-Carlo analysis, a response surface method has been used instead. This response surface is

formed by two third-order polynomials.

S 1
o= Y aji———

i,j.k=0 ~ Ci€jCk

with ) = 1, €1 = Riemel, €2 = €uufiers €3 = €1pyc, €4 = €sic and es = eopyc. The fitting of each

polynomial is carried out by regression on 500 ATLAS simulations (Figure 2-34).

Figure 2-34. SiC tangential stresses (Pa) — ATLAS runs versus polynomial approximation.
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Figure 2-35. Failure probability history - 1100°C.

Using this method, the mean failure probability of 10’ random particles has been computed.
With this set of data for three pebbles of 9560 particles, the prediction indicates the first particle
failure near 18 %FIMA.

6" Co-ordinated Research Program (CRP6) benchmark

The case presented below is derived from Case 4 of the CRP6 coated particle fuel performance
code benchmark (normal operation). This case simulates the behavior of a pressurized PyC/ SiC
two-layer single particle under fast fluence without burn-up. This calculation, in which all the
parameters needed by the codes are fixed (see Table 2-16), is useful to check the strength of the

visco-elastic mechanical particle model.
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Table 2-16. Parameters for IAEA CRP Benchmark Calculation.

Parameter Unit Value
General particle data
Kernel diameter um 500
Buffer/IPyC/SiC thicknesses pm 100/40/35
Kernel density Mg/m’ 10.8
Buffer/IPyC/SiC densities Mg/m’ 0.95/1.9/3.20

Irradiation conditions

Irradiation duration Effective Full Power Days 500
End of life burnup %FIMA 0
End of life fluence 10 n/m* (E > 0.18 MeV) 5
Constant temperature K 1273
Internal pressure MPa 25
Ambient pressure MPa 0.1
PyC and SiC properties
PyC - SiC Young Modulus MPa 3x10*-4x10°
PyC - SiC Poisson’s ratio / 0.2-0.33
PyC creep coefficient (MPa.10% n/m™ (E>0.18 MeV))™ 40x 107
PyC IDC //, (o) (10° /m?)"  (E>0.18 MeV) -0.03
PyC IDC L, (n,) (10® n/m?)"  (E>0.18 MeV) -0.01
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Figure 2-36. Benchmark case results: PyC and SiC tangential stress history.
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Figure 2-36 above presents the tangential stress history. For this case, the IIDC leads to a very
high value of dimensional change which corresponds to a high BAF value, about 15% in the
tangential direction for ® = 5 x 10 n/m™ E > 0.18 MeV (10% would be perhaps more realistic).
Nevertheless, to quantify the effect of the large displacement hypothesis, which is largely
justified in this case, a parametrical study has been made with the same case but with the pressure
equal to zero. Three set of results have been compared: two ATLAS options (large and small
displacements) and an analytical solution from INEEL. The Figure 2-37 below presents the
tangential SiC stress history for the three cases. Analytical solutions and small displacement
ATLAS calculations are very close (stress goes up to an equilibrium which corresponds to an
equilibrium between dimensional change and irradiation-induced creep). The large displacement
hypothesis takes into account the particle geometry history in the stiffness matrix computation.
This result must be consistent with the material property history and will be discussed elsewhere

(under the CRP benchmark effort).

0 .
ATLAS small
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Figure 2-37. Parametrical study without pressure.
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3. TASK 3: CONCEPT IMPROVEMENTS

Responsible Lead: MIT

Brief Description of Objectives:

In order to evaluate the ability of the classical TRISO fuel form to reach extended burnups (20%
FIMA and higher), deterministic fuel performance calculations were performed using the models
developed in Task 2. As a consequence of these extended fuel life calculations, requirements for
fuel materials are illuminated. These requirements include that the fuel particles be able to
withstand the developed stress levels and the internal chemical environment of the particle. Of
particular concern to extended burnup fuel with pure oxide kernels is the production of CO. At
high burnup, CO/CO, levels will increase significantly (2x) compared to the current burnup
levels. In addition, and perhaps more importantly, with high burnup fuel and/or fuel with large
quantities of Pu, there will be a factor of 10 to 50 increase in the fission yields of Ag and Pd.
These fission products have been shown to have a propensity to be released from the particle
(Ag) or to attack the SiC barrier layer (Pd). It is also possible that these fission products act to
weaken the SiC by their presence on the grain boundaries. Additionally, there is recent evidence
to indicate that the transport mechanism for Ag in graphite is not by classical diffusion but by a
vapor transport mechanism. However, the exact mechanism of Ag transport has been subject to
much debate and the information with regard to Ag transport in graphite is new. MIT explores
the fundamental interaction of Pd and Ag with SiC and ZrC. INEEL explores fission product
interactions with particle layer materials. CEA explores the potential use of ZrC as the pressure

barrier material for particle fuel.
3.1 Task Technical Overview: MIT

lon Implantation

As discussed in Appendix A, silver release has been observed from SiC-coated fuel particles
during irradiation and out-of-pile testing. In most cases, however, silver release was reported
only for batches of fuel particles or entire fuel elements, leaving uncertainties about individual
particle performance. To date, silver concentration profiles, characteristic of diffusion in silicon
carbide, have not been reported. To address this topic and to study silver transport mechanisms

directly, ion implantation experiments were performed to observe silver transport within CVD
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SiC from a known initial concentration profile. These experiments were designed to obtain

direct measurements of silver migration.

In previous work, Nabielek et al. implanted low energy silver ions into SiC disk samples and
measured the concentration profile before and after heating (Nabielek, Brown, and Offermann
1977). There was no change in the silver concentration profile after 30 min at 1180°C. Nabielek
et al. attributed this result to silver ions being trapped in silicon carbide grains during

implantation and not being able to diffuse along grain boundaries.

In this previous ion implantation experiment samples were heated at a fairly low temperature for
a very short time. The goals of the current ion implantation experiment were to investigate silver
behavior in SiC at higher temperatures, those more likely to facilitate silver transport, and to
witness silver migration in silicon carbide starting with a known and measurable concentration.
A lack of silver migration, however, in silicon carbide during heating, as described below,
provides evidence that implanted silver was deeply trapped and does not diffuse in silicon

carbide via either a grain boundary or trans-granular mechanism.

Experimental Setup

Materials

Flat plate SiC, 0.3 cm thick, was the starting material for the ion implantation experiments.
Chemically vapor deposited (CVD) by Coorstek, the reported density was 3.21 g/cm’ with grain
sizes on the order of 3-10 um, preferentially oriented in the direction perpendicular to the SiC
surface(CoorsTek 2003). XRD (X-ray diffraction) analysis on a polished SiC sample, shown in
Figure 3-1, confirmed that the Coorstek CVD SiC contained crystalline B-SiC with a strong
preferred orientation such that the (111) planes were parallel to the surface. Long, dendritic SiC

grains, perpendicular to the surface, are evident in AEM analysis, show in the inset in Figure 3-1.

97



10.0

8.0

Intensity(Counts)

4.0

204

I (222)
A

x10%6

30 405 80T B B0 . D, AT e e O 100, 5 S SRR g Y S0
Two-Theta (deg)

Figure 3-1. XRD analysis of an unexposed SiC sample shows -SiC with a preferred
orientation with (111) planes parallel to the surface. Long, dendritic grains are evident in AEM
analysis (inset).

Each ion implantation sample was cut to 5 x 5 x 0.3 cm. One 5 x 5 cm face of each sample was
polished to a mirror finish with a mean surface roughness, Ra, of 0.005 pm as measured by a
Zygo interference microscope. A flat and uniform initial SiC surface ensured the best possible
implanted silver profile. The silver ions began to slow down as soon as they hit the SiC surface
during implantation. Excessive surface roughness across the implantation area would have
caused variations in the silver implantation profile from the expected distribution which was
predicted by the free-ware package SRIM (Stopping and Range of Ions in Matter) (Ziegler and
Beirscak 2003).

lon Implantation

The goals of the ion implantation were to implant a measurable quantity of silver in silicon
carbide and also to implant the silver deep enough that it would not migrate out of the sample
during heating. Based on silver diffusion coefficients reported in the literature by Amian and
Stover, it was expected that without accounting for trapping, the silver could diffuse greater than

10 um in just 10 h at 1500°C with the peak concentration dropping to less than 1% of its original
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value (Amian and Stover 1983) To prevent possible silver loss during annealing and to avoid the
region of surface anomalies resulting from the mechanical polishing process, the silver needed to
be implanted approximately 9-15 um into the silicon carbide. Calculations using the SRIM code
indicated that ion beam energies on the order of 90-161 MeV were necessary to achieve

implantation depths in the desired range.

The silver ions were implanted at the ATLAS facility at the Argonne National Laboratory using
the positive-ion injector (PII) to create the silver beam. PII consists of three major subsystems:
an electron cyclotron resonance (ECR) ion source and high-voltage platform, a 12-MHz beam
bunching system, and a 12-MV super-conducting LINAC accelerator. The PII ECR source is a
10-GHz electron cyclotron resonance ion source mounted on a high-voltage platform. The beam
bunching system compresses the beam into narrow time packets, allowing the linac to accelerate
the ion beam without introducing significant energy spread. The super-conducting resonators in
the PII linac accelerate the ion beam from the low velocity provided by the PII ECR to the higher
velocity required for injection into the remainder of ATLAS (Argonne National Laboratory
2004). Figure 3-2 shows a floor plan of the ATLAS facility. All of the silver implantations were

conducted upstream of the booster linac.
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Figure 3-2. ATLAS floor plant (courtesy Argonne National Laboratory).
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Two batches of samples were irradiated at ATLAS. The first batch contained samples
designated 1, 2a, and 2b. Silver ions with a total energy of 161 MeV and charge state of +18
were implanted at a mean range of 12.8 um with a peak at 13.0 um. The second batch of
samples (designated 4a-7b) were implanted with 93 MeV silver ions with charge state +19 at a
mean range of 9.05 um with a peak at 9.66 um. A copper braid connected from the back of the
sample holder to a water-cooled copper block cooled the silicon carbide samples during
implantation. Type K thermocouples were used to measure the temperature at the back of the
SiC samples. Average temperatures during implantation varied from 120°C to 240°C. The ion
beam consisted of an irregular area approximately 10 mm in diameter with a 4 mm diameter
central area where the ion concentration was the greatest and nearly uniform. The beam area can
be seen on the surface of the SiC samples after implantation in Figure 3-3. The region outside
the central beam area was much less uniform which resulted in variations in the as-implanted
silver concentration profile. The entire ion beam was implanted directly in samples 1, 2a, and
2b. The depth profiles measured in sample 2b were taken from the center, high concentration
area of the silver implantation. Silicon carbide plates with 4 mm diameter holes placed over
samples 4a-7b provided masks, limiting silver implantation to only the high concentration,

central beam area in the polished SiC samples. Figure 3-4a shows a SiC mask and 4-4b shows a

SiC sample after implantation with a mask.

high- ‘
coneentration |
-

‘s/ilve zone\,’\‘

= | .
- — v

Figure 3-3. The silver implantation consists of a high-concentration center and low-
concentration halo as seen on samples 1 (left) and 2 (right) after ion implantation.
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Figure 3-4. SiC masks in front of the SiC samples restrict silver implantation to well-defined

arcas.

defined beneath the mask on sample 6.

Table 3-1 lists the silver ion implantation conditions for all of the implanted SiC samples. The

total irradiation times were selected to achieve implanted doses on the order of 10'° to 10'” atoms

given the actual current during each implantation run. The calculated cumulative doses in the

high silver concentration volume (4 mm diameter x 1 pm depth) ranged from 2.4x10' silver

atoms to 1.4x10" silver atoms.

Table 3-1. Silver ion implantation conditions for all of the SiC samples.

Beam Silver Irradiat. Time Minimum | Maximum | Cumulative
Sample . Averaged
D Energy | Charge Time Current Current current dose
(MeV) State (h:min) (epA) (epA) (epA) (atoms)
1 161 +18 11:43 1.7 1.4 2.2 2.5E16
2a 161 +18 7:54 2.4 2.3 2.8 24 El6
2b 161 +18 22:17 3.2 1.5 4.8 9.3 El6
4a 93 +19 18:31 3.6 2.7 5.1 8.5E16
4b 93 +19 20:09 5.1 4.1 8.2 1.3 E17
Sa 93 +19 10:10 6.9 7.9 9.8 1.0E17
5b 93 +19 9:21 7.6 7.0 9.0 8.7E16
6a 93 +19 6:27 13.1 12.0 14.0 1.3E17
6b 93 +19 6:33 12.4 12.0 13.5 1.2 E17
7a 93 +19 7:34 10.7 9.8 12.0 1.3 E17
7b 93 +19 13:21 8.7 7.2 9.8 1.4E17
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Expected Implantation Effects on SiC Microstructure

The silver implantation resulted in extensive radiation damage in the SiC due to the energy loss
and displacement cascades associated with the slowing down of the silver ions. Questions
related to the possible interaction between the SiC damage and silver transport processes are
important and must be addressed. Slowing down of the high-energy silver ions produces
radiation damage that can be grouped into two general categories: 1) electronic energy loss, and
2) displacement production. The slowing down process is, as a rule of thumb, dominated by
coulombic interactions (electronic energy loss) until the energy of the ion is reduced to a value in
keV approximately equal to its atomic weight. For silver ions, therefore, electronic energy loss
will dominate until the energy has decreased to approximately 100 keV. Roughly 99% of the
silver energy loss, therefore, will be in the form of heat which will be deposited, spatially, in
front of the displacement damage. The remaining energy loss will result in the production of
displacement cascades. The displacement cascades will produce damage in the form of
displacements, dislocation loops, and, if the dose and dose rate are high enough, amorphization

and/or recrystallization of the SiC.

For the implantation conditions in this work, SRIM calculations indicate that significant
displacement damage begins at a depth of 5 um and 7 um for the 93 MeV and 161 MeV cases,
respectively, with the peak in displacement damage occurring at about 9 um and 13 pm,
respectively. Figure 3-5 shows the results of the SRIM calculations for 93 MeV and 161 MeV
silver ions in SiC. Although the SRIM code calculates damage using a simple Kinchen-Pease
displacement model, the results are instructive on a relative basis when comparing the number of
displacements and subsequent vacancy production and will be quite accurate when predicting the

energy loss and spatial distribution of damage.
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93 MeV Silver Implantation
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Figure 3-5. Results of SRIM calculations for silver implantation at 161 MeV and 93 MeV.
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With respect to amorphization, Wendler et al. have shown that for high-energy ion damage, SiC
amorphization becomes impossible at temperatures above approximately 250°C (Wendler, Heft,
and Wesch 1998). Heera et al. have discussed the dynamic relationship between the damage
rate, ion characteristics, and the location of the ion-beam induced epitaxial/amorphized region
boundary (Heera et al. 1995). Also, Pacaud et al. have reported that the crystallization
temperature for ion implanted SiC is approximately 950°C (Pacaud et al. 1996).

Based on the above discussion, the implantation process was expected to result in a multi-zone
damage region consisting of the following zones when proceeding from the beam entry point: 1)
a region of unaltered SiC where, while the electronic loss energy deposition is very high, the
displacement damage will be essentially zero; 2) a region where the displacement damage begins
to accumulate and in which the SiC will be severely disrupted and probably dynamically
recrystallized; 3) a region where amorphization has occurred since the irradiation temperature
was not expected to exceed 250°C; and 4) a region of undamaged SiC beyond which may have a
diffuse boundary due to straggling of the ion slowing down process. The silver is expected to be

in the rear of amorphous SiC region.

With respect to the effect of the radiation damage on the morphology of the silver, as it may
affect migration during subsequent annealing, the damage process will result in complete mixing
of the SiC and silver in the amorphous region. The silver, implanted at a peak concentration of
approximately 20 atomic percent, is expected to precipitate, as elemental silver, within the
damage zone since the solubility of silver in SiC is negligible. This arrangement should provide
an almost ideal situation in which silver is in intimate contact, if not actually mixed, with the SiC
matrix. Additionally, the recrystallized SiC region can be expected to provide grain boundary
area for possible transport. Lastly, the annealing process will result in recrystallization of the
damaged, amorphous region, producing grain boundaries in exactly the same location as the
silver. Such conditions should be ideal for silver migration through the SiC as predicted in the

literature.

Annealing Conditions
The goal of the ion implantation experiment was to observe silver migration in SiC from a
known and measurable initial concentration. Implantation of a high silver concentration, on the

order of 10 atomic percent averaged over the entire implantation volume, ensured that the silver
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concentration profile would be measurable, above the detection limits of the analysis techniques,

both before and after annealing.

All of the heat treatments were conducted in a Webb graphite furnace at 1500°C = 15°C. A heat
treatment temperature higher than typical operating temperatures was selected in an effort to
encourage migration. A review of the literature indicated that grain boundary diffusion was a
dominant silver transport mechanism with a representative diffusion coefficient of 2x10"°m%s.
The heat treatment conditions were selected to observe measurable silver transport after the test,
based on the literature values. At 1500°C, measurable silver transport was predicted, given
representative diffusion coefficients, in fewer than 10 h. Heat treatments as long as 480 h were
conducted to allow ample time for silver transport in the SiC samples. The Webb furnace
operates under low vacuum at 1500°C with typical vacuum readings in the range of 4-15 mTorr.
Each sample was sandwiched between two blocks of silicon carbide, approximately 5 x 5 x 1.3
cm, to limit interaction between the surface of the implanted SiC and any contaminants in the

furnace atmosphere.

The silver concentration profile was measured in sample 2b before and after annealing at 1500°C
for 210 h. AEM (analytical electron microscopy) of sample 6a after implantation and sample 5a
after 480 h at 1500°C compared the effects of annealing on the silver distribution. Table 3-2

shows the heating data for the samples analyzed; details of the analyses are discussed below.

Table 3-2. Annealing conditions for selected samples.

Sample ID Irr(lgtl(a)lfll;[:/cclmlzg))se Tem([;eé;l ture T(lg)l ¢ Analysis
2b 1.9 E+21 1500 £ 15 210£0.25 XPS profiles
Sa 2.1 E+21 1500 £ 15 480 £ 0.25 AEM
6a 2.6 E+21 n/a n/a AEM

Results and Discussion

Before and after heating, the ion implantation samples were analyzed using XPS (X-ray
photoelectron spectroscopy) to measure the silver concentration profile, and SEM (scanning
electron microscopy) and AEM to examine the silver distribution within the SiC. XPS detected
no measurable change in the bulk silver concentration profiles after heating. SEM and AEM

analyses showed a change in the microscopic distribution of the silver, with a diffuse silver
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distribution after implantation transforming to discrete silver precipitates after heating.
Additionally, the AEM analysis showed the diffuse silver residing in amorphous SiC after
implantation and silver precipitates between recrystallized SiC grains after heating. Both the
SEM and AEM analyses showed that the silver did not migrate out of its original deposition

zone.

Silver Concentration Profiles

Measurements of the silver concentration profiles before and after heating were expected to
show silver migration away from the initial implanted profile. Calculations based on previously
reported diffusion coefficients predicted complete depletion of the silver concentration profile
after 210 h at 1500°C. Figure 3-6, however, shows that there was no change in the silver
concentration profile in sample 2b after heating at 1500°C for 210 h. The expected silver
concentration profile, based on the diffusion coefficient reported by Amian et al., after just 1 h at
1500°C is also shown in Figure 3-6 (Amian and Stover 1983). Diffusion of the magnitude

previously reported clearly did not occur, if at all.

XPS, also known as ESCA (electron spectroscopy for chemical analysis), measures
concentration profiles by alternating spectral data collection with sputter cycles. The spectral
data collection includes the identification of the elements present along with bonding
information while the sputter cycles remove material and expose successively deeper layers of
the sample. One advantage of XPS analysis is the ability to distinguish not just the elements, but
also the chemical bonds present; with this technique, for example, free silicon can be
distinguished from silicon bound in silicon carbide. In the sample analyzed, XPS detected no

free silicon above the detection limit of approximately 1 atomic percent.
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Figure 3-6. Silver concentration profiles before and after heating at 1500°C for 210 h are the
same (sample 2b).

To achieve the best comparison between silver concentration profiles before and after heating, it
was necessary to use the same sample. A 1.3 mm hole punched in a thin gold foil provided a
mask over the 4 mm silver implantation area, preserving the small silver spot from the normally
large XPS sputter area, usually a few millimeters in diameter. A schematic of the gold-foil mask
over the SiC sample is shown in Figure 3-7. Use of the small gold mask increased uncertainties
in the final XPS concentration profiles due to self-shielding during sputtering leading to edge
rounding of the sputter crater. An uneven and sloped crater bottom also increased the

uncertainty of the total depth of the crater.

Gold foil mask Silver implantation zone
T
XPS analysis zone

Figure 3-7. A gold-foil mask limited the XPS analysis area (schematic not to scale).
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A tight fit between the size of the sputter area and the size of the XPS analysis beam increased
uncertainty in the final concentration profile. The bottom of the sputter crater was about the
same size as the analysis beam. When the analysis beam measured the concentration at a certain
depth, up to 10% of the data signal actually came from the rounded edges of the sputter crater
and even from the sides of the crater walls. At any depth, therefore, the detected signal was
actually coming from a range of depths, not just the bottom of the crater. Although these
uncertainties in the silver concentration profile tended to artificially widen the measured
concentration profile, they were present in both analyses, still allowing for a direct comparison

between the two profiles before and after heating.

A silicon carbide sputter standard was not available to determine the sputter rate during the XPS
analysis. A Zygo interference microscope was used to measure the depth and shape of the
sputter craters. Figure 3-8 shows the sputter crater after XPS analysis of the silver concentration
profile after at 210 h, 1500°C heat treatment. The depth of the sputter craters was used to
calculate the sputter rate during XPS analysis and generate a concentration depth profile from the
spectral data. The sputter rate was assumed constant throughout the silicon carbide and equal to
the total crater depth divided by the total sputter time. However, an uneven and sloped crater

bottom created uncertainty in the total depth of the sputter crater and the sputter rate.

60.0000

50.0000 - e

40.0000 -

30.0000 -

3

20.0000 -

Height (um)

|'_I_T_f_'!_||ll||r|il|l||$||1TlifllT

0.00 0.50 1.00 1.50 2.00 2.50
Distance {(mm)

Figure 3-8. The sloped walls and narrow bottom of the XPS crater contribute to the
measurement uncertainty.
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These uncertainties are shown as error bars in Figure 3-6, but it is still clear that, within the
uncertainty of the XPS analysis, there was no silver migration during heating, a significant
departure from the expected results. If silver migration were governed by typical diffusion
coefficients reported in the literature, the silver concentration after heating for 210 h at 1500°C
would be completely depleted. However, there was no macroscopic silver concentration change
during heating. Within the spatial resolution of XPS the silver concentration profiles before and
after heating were the same and silver did not diffuse during the 210 h anneal at 1500°C. Based
on the lack of change in the silver concentration profile after heating and the uncertainty of the
measurement, the diffusion coefficient for silver in SiC must be less than 5x10'm?/s at 1500°C.
XPS results average the spectral data collected over a fairly large area, approximately 800 um x
800 um. Techniques with finer spatial resolution, such as SEM and AEM, were needed to

investigate the detailed silver behavior and the effects of ion implantation in silicon carbide.

Electron Microscopy

Background

Although it is significant that no macroscopic silver concentration changes occurred during
heating for 210 h at 1500°C, the details of silver behavior in silicon carbide were of interest.
Both SEM and AEM examinations of the SiC samples revealed details of the silver distribution
and the SiC microstructure. The goals of the SEM analysis were to observe the distribution of
the silver in the SiC samples and to compare the width, if possible, of the silver zone before and
after heating. Higher magnification AEM analyses provide details of the SiC microstructure and

the silver distribution and orientation with the SiC zones.

AEM was used to analyze thin cross-sectional slices of two ion implantation samples, one before
annealing and one after. The goals of the AEM analysis of the ion implantation samples were to
observe and identify the silver location in the implanted region, both before and after heating.
An additional goal was to characterize the silicon carbide grain structure both within and outside
the implantation region and also to characterize, if possible, the damage in the implanted region.
The AEM analyses were performed on a Philips CM300 equipped with an EDAX X-ray detector

for elemental analyses.
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Scanning Electron Microscopy

SEM analysis of polished cross-sectional surfaces of the SiC ion implantation samples, both
before and after annealing, highlights contrast in atomic number at the sample surface, with
higher Z materials appearing brighter in the images (e.g., silver appears brighter than silicon).
The SEM analysis was performed on a FEI/Philips XL30 FEG Environmental SEM with energy-

dispersive X-ray capability. The SEM was operated under H,O vacuum mode.

The silver distribution after implantation is seen in b and ¢ at low and high magnification,
respectively. The implanted silver zone is approximately 9 um below the front edge of the SiC
sample and approximately 1 um wide, in good agreement with the predicted silver profile
calculated using SRIM and shown in a. The silver location is also consistent with the calculated
displacement damage morphology shown in Figure 3-5 (93 MeV). Chemical analysis by EDS
(energy dispersive spectroscopy) indicates that silver is located only in the bright area. The EDS
spectra associated with the locations identified in Figure 3-9b6 are shown in Figure 3-10; the

locations identified as 1 and 3 are SiC and location 2, in the bright region, contains silver.
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Figure 3-9. The as-implanted silver distribution matches the a) predicted profile from SRIM
and appears bright in SEM backscatter imaging and is diffuse (homogeneous) in sample 6a at b)
low magnification and c) high magnification.
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Figure 3-10. EDS spectra from points a) 1, b) 2, and ¢) 3 in Figure 3-9. Silver is only present
in the bright area; no silver is detected on either side of the implantation zone.

After heating for 480 h at 1500°C, the silver appears discrete and individual silver particles are
evident, as seen in Figure 3-11. While the arrangement of silver appears coarser after heating,

the width of the silver zone is still approximately 1 um, unchanged during heating.

As mentioned earlier, atomic number contrast in the SEM causes heavier elements to appear

brighter in basckscatter images. Thus, silver appears as bright spots in contrast to the gray
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silicon carbide in the SEM images. Some bright spots appear in front of the implanted silver
zone in Figure 3-11 (towards the left in the image). Although EDS confirmed that the
composition of the bright spots in the implanted silver zone was silver, the bright spots in front
of the main implanted silver zone were not analyzed. These spots are likely silver that has

precipitated in a defect structure in the SiC.

implanted
silver zone

front jof
SiC

Figure 3-11. The silver distribution is discrete after heating at 1500°C for 480 h (sample 5a).

As-implanted SiC Microstructure

A recrystallized zone of silicon carbide defines the front of the silver implantation zone in
sample 6a, before annealing, as seen in Figure 3-12. The original silicon carbide columnar grain
structure is visible to the left and right of the implantation zone. The altered zone consists of
three main regions. In the front-most region of the implantation zone, on the left in Figure 3-12,
the SiC has already recrystallized. The middle of the altered zone contains amorphous SiC.
Towards the back, the SiC is still mostly amorphous, but small SiC crystallites have nucleated.
While all of the SiC grains in the recrystallized zone at the front of the implantation zone are
fine-grain equiaxed, there appears to be a further distinction between smaller, more equiaxed

grains at the front and slightly larger, more elongated grains at the back. The smaller equiaxed
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grains are approximately 50-150 nm and the larger grains are about 100-200 nm wide by 250-
400 nm long.

The back 1.1 um of the altered zone is largely amorphous, but also contains some small
equiaxed SiC crystallites ranging in size from less than 4 nm to about 30 nm. Silicon carbide
grains have nucleated and started to grow in the back of the amorphous region during
implantation, but have not been able to incorporate all of the SiC. A thin band of the original
SiC behind the altered zone, about 80 nm wide, appears damaged with increased faulting, though

the damage was not great enough to cause amorphization or recrystallization.
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Figure 3-12. The as-implanted silver profile measured by EDS matches the predicted profile
from SRIM calculations; numbers indicate EDS spectra locations.
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EDS (energy dispersive spectrometry) measurements taken during the AEM analysis along the
cross-section of the implanted sample provide a qualitative assessment of the silver
concentration in the silicon carbide. The locations of EDS measurements are shown in Figure 3-
12 and the silver concentrations are listed in Table 3-3. No silver was observed in the original
SiC in front of the altered zone or in the front portion of the recrystallized zone. Silver just
above the detection limit of approximately 1000 ppm (0.1 atomic percent) was measured in the
recrystallized zone at the boundary between the equiaxed and slightly dendritic SiC grains. EDS
detected peak silver concentrations in the amorphous SiC region. A small amount of silver was
detected at the boundary between the amorphous region and the original SiC and just a trace of
silver was measured in the damaged layer of the original SiC just behind the altered zone. The
silver profile, measured by EDS, agrees with the predicted silver implantation profile, as seen in

Figure 3-12, with the peak concentration occurring in the amorphous SiC.

Table 3-3. Most of the silver, detected by EDS, is located in the amorphous SiC region.

Spot Location Silver Concentration (%)
#*
1 as-fabricated SiC, front none detected
interface between front SiC and
2 . ) none detected
recrystallized SiC
3 ~0.2 pm into recrystallized SiC none detected
in the middle of the
4 recrystallized, equiaxed SiC 1.1 (trace)
5 between the equiaxed and 2.8
6 dendritic recrystallized SiC 5.1
7 . 26.3
hous d d
2 amorphous damaged region 75 1
9 interface between amorphous SiC 40
and as-fabricated SiC )
10 damage zone of as-fabricated SiC 1.2 (trace)

* EDS spot locations are shown in Figure 3-12.

Additional analysis using a VG HB603 STEM (scanning transmission electron microscopy)
operated at an acceleration voltage of 250 kV highlights the presence of silver in the amorphous
SiC zone and decorating the first row of grains in the recrystallized zone, as seen in Figure 3-13.
The images displayed in Figure 3-13 correspond to the middle of Figure 3-12, the interface
between the recrystallized and amorphous SiC zones. The small bright dots in the STEM images
are silver-rich while the dark areas are silicon-rich. The spatial resolution of the chemical

analysis in the STEM was on the order of the size of the bright features, so the quantitative
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composition of the bright features and dark areas cannot be determined. No silver was detected
in the undecorated recrystallized SiC grains below about the first row next to the amorphous SiC

zone, as seen in Figure 3-13a.

At this resolution it is clear that the silver morphology depends on the SiC region in question. In
the amorphous region, seen in Figure 3-13b, the silver is separated into small, approximately 5
nm in diameter, regions. The distribution of these silver-rich regions is random, in keeping with
the amorphous nature of the region. In the recrystallized SiC material, seen in Figure 3-13c, the
silver regions are slightly larger, but the morphology now appears oriented within the SiC crystal
structure. The B-SiC (3C-SiC) crystallizes in the zinc blende structure, which can be visualized
as two interpenetrating (carbon and silicon) face-centered cubic lattices offset by % cubic
diagonal. The morphology of the silver suggests a preference for precipitation on the close

packed planes in this structure, i.e., the (111) body diagonals.

amorphous SiC

T

re rystz;ﬁized SiC

recrystallized SiC

Figure 3-13. Silver is detected in the amorphous region and into the first rows of grains by
STEM of the as-implanted sample 6a.
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An elemental line scan collected during STEM analysis, shown in Figure 3-14, also confirms the
implanted silver distribution as measured during AEM analysis and seen in Figure 3-12 and
Table 3-3. The results, though qualitative, confirm that silver is located predominantly within

the amorphous region and extends just into the recrystallized SiC zone.
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Figure 3-14. A line scan in STEM shows the silver concentration peak in the amorphous SiC
zone of an as-implanted sample (6a).

Annealed SiC Microstructure

The amorphous implantation zone completely recrystallized, as expected, during a 480 h anneal
at 1500°C (sample 5b), as seen in Figure 3-15. The amorphous SiC was completely eliminated
from the altered zone during annealing. The recrystallized zone is approximately 2.1 um wide
and is characterized by two regions. The front region, which closely corresponds to the region
that was dynamically recrystallized during implantation, has been transformed into an epitaxial,
columnar region. The rear region, formally amorphous, has crystallized and is characterized by
a fine, equiaxed structure. This region also contains precipitated silver, phase-separated from the
SiC. Figure 3-16 shows a silver elemental map, taken during STEM analysis in the annealed
material. The silver has clearly remained segregated within the implanted region. The

crystallized SiC, after annealing, is shown in more detail in Figure 3-17. The silver appears
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darker than the SiC in the AEM images due to its higher atomic number. The silver is

segregated from the SiC and has accumulated on grain boundaries.

While all of the recrystallized SiC grains are small and generally equiaxed, the front of the
recrystallized zone features elongated grains, oriented along the implantation direction with
widths approximately 30 nm to 100 nm and lengths ranging from 300 nm to 800 nm. The back

half of the recrystallized zone contains smaller, more equiaxed SiC grains, on the order of 40 nm

to 100 nm.
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Figure 3-15. The SiC completely recrystallized in sample 5a after heating for 480 h at 1500°C.

117



silver map

~lpum | . . L
—= Silver implantation direction

Figure 3-16. STEM micrograph and silver dot map shows discrete silver morphology in the
SiC after heating for 480 h at 1500°C (sample 5a).
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Figure 3-17. Detail of crystallized SiC after annealing for 480 h at 1500°C shows typical silver
precipitates (sample 5a).
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Just behind the recrystallized zone, there is a zone, approximately 0.5 pm wide, of heavily
damaged, original silicon carbide, as seen in Figure 3-18a. In this region, the implantation
damage was not sufficient to cause recrystallization or amorphization of the original SiC. The
radiation damage calculations, however, indicate that a significant amount of displacement
damage should have been present. Small precipitates of silver decorate the silicon carbide
behind the recrystallized zone, shown in Figure 3-18h. These silver regions are approximately 4-
20 nm in size. The damaged layer is approximately 300-400 nm wide. As seen by comparing
Figure 3-18 a and b, silver is only present in the heavily damaged SiC zone. The low
concentration of silver in the damaged SiC just behind the recrystallized zone is consistent with
the tails of the silver concentration profile predicted using the SRIM code and the EDS spectra
collected during AEM, as shown in Figure 3-12 and Table 3-3. Silver has not migrated into the

undamaged SiC regions.

Silver appears only in the rear portion of the altered SiC zone, the same region where it appeared
in the as-implanted sample, as seen in Figure 3-12. After implantation, but before heating, silver
was detected in the amorphous zone. This zone recrystallized during heating, forming equiaxed
grains where the silver was detected. No silver was implanted in the front portion of the altered
SiC, where the grains recrystallized during heating and grew slightly during annealing, and none

is detected after heating.

119



ol
as-fabricated,

3 Idamz_l';g:ed

; el Tver in i
] S10 '
o, e

'-‘ recrystallized SiC

¥ as-faEr)ri'éated

Figure 3-18. After 480 h at 1500°C, silver is only detected in the recrystallized SiC and in the
heavily damaged SiC behind the recrystallized zone.

Figure 3-19 shows the details of a typical grain boundary region. Analysis of the grain
boundaries in the region immediately behind the damaged region, where grain boundaries from
the undamaged region intersect the damaged, silver-containing region, did not detect the
presence of silver. Silver has not migrated into the undamaged SiC regions in spite of the fact

that optimal conditions existed for migration to occur.
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Figure 3-19. No silver was detected on grain boundaries at the interface between the damaged
and undamaged regions after annealing for 480 h at 1500°C (sample 5a).

The recrystallization process created new grain boundaries as well as a significant increase in
grain boundary area compared to the original CVD SiC microstructure. As the amorphous SiC
crystallized and formed B-phase grains, impurity silver atoms were rejected due to their low
solubility. The silver atoms, segregated from the recrystallized SiC grains, appear as phase
separated precipitates in the SiC recrystallized zone, as seen in Figure 3-20. During annealing,
silver was in intimate contact with SiC grain boundaries, but no silver migration was observed
either by XPS or AEM analyses. A region of low concentration silver exists just behind the
recrystallized SiC in the heavily faulted original SiC microstructure. There is no evidence,
however, of silver migration along grain boundaries present in the original SiC, as shown in

Figure 3-19 and in the lower right corner of Figure 3-20.
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Figure 3-20. No silver was detected on grain boundaries at the interface between the damaged
and undamaged regions after annealing for 480 h at 1500°C (sample 5a).

The recrystallized zone in sample 5a after heating is narrower than the recrystallized plus
amorphous zone in sample 6a before heating. Sample swelling measured after implantation is
proportional to the implanted dose. Sample 6a had a higher implantation dose than 5a and,
therefore, increased swelling, consistent with a wider implantation zone. The implantation zone
in sample 5a is also narrower after heating due to the transition from the disordered and lower

density amorphous SiC to the more compact B-SiC.

A comparison of the AEM analyses before and after annealing makes it clear that the amorphous
SiC region observed before annealing has recrystallized during heating. After annealing, the
altered zone contains all crystalline silicon carbide with phase-separated silver. The silver

concentration profile after heating matches the profile before heating. EDS did not detect any
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silver in the front half of the recrystallized zone after heating. Discrete precipitates of silver lie
between the SiC grains in the back half of the recrystallized zone. Lower concentrations of
silver are present in the damaged layer of the original SiC, behind the recrystallized zone. The
relative amounts and position of silver in the silicon carbide match before and after heating,
showing that the silver did not move the distances expected based on previously published grain

boundary diffusion coefficients.

The silver redistributed during heating as the amorphous silicon carbide recrystallized and the
SiC grains grew. Silver, in intimate contact with SiC in the amorphous region before heating,
phase separated during heating as the SiC recrystallized. As the SiC grains grew they rejected
the silver, which appears to have negligible solubility in SiC, to the grain boundaries.
Recrystallization created new grains and new grain boundaries, which advanced as SiC grains
grew. Yet, no large-scale silver migration occurred. Silver rejected from SiC during
recrystallization and grain growth had access to SiC grain boundaries, but no grain boundary
diffusion was observed. Even silver at grain boundaries in the heavily faulted region of the
original SiC just behind the recrystallized zone did not migrate, an observation in contradiction

with the assumptions found in the previous literature.

Summary of Electron Microscopy Observations

The silver implantation resulted in a region of dynamically recrystallized SiC and a region of
amorphous SiC. The amorphous SiC zone contained most of the deposited silver along with the
peak of the silver concentration profile. The amorphous SiC recrystallized during heating and
the grains that recrystallized during implantation also grew slightly during heating. There was
no macroscopic change in the silver distribution in the SiC after heating for 480 h at 1500°C.
The implanted silver appeared as randomly distributed, small, discrete regions in the amorphous
SiC zone after implantation and as larger precipitates between crystalline SiC grains after
heating. No silver migration was observed into the dynamically recrystallized SiC zone, in front
of the amorphous zone, or into the original SiC behind the implantation zone either during
implantation or heating. Additionally, no silver was detected along the grain boundaries, either
in the recrystallized SiC or in the original SiC. These results are not consistent with diffusive
behavior. Had the silver diffused according to the values reported in the literature, the silver
would have diffused many micrometers away from the initial concentration profile and dropped

to undetectable levels in the peak implantation zone.
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Comparison to Literature

No silver migration was measured in a previously reported ion implantation experiment.
Nabielek et al. implanted lower energy silver ions into silicon carbide, just below the surface,
and annealed the sample for only 30 min at 1180°C (Carter, Davis, and Bentley 1984).
Rutherford backscattering measurements before and after heating showed no change in the silver
concentration profile. The authors concluded that silver had most likely been trapped in SiC
grains and, therefore, silver diffusion was not observed because matrix diffusion of silver in SiC

is much, much slower than grain boundary diffusion.

The current experiments show that massive SiC recrystallization occurred during both
implantation and heating. The solubility of silver in silicon carbide is extremely low and silver
was swept out of SiC grains during SiC recrystallization. This evidence shows that silver is not
trapped in SiC grains during recrystallization and that trapping, therefore, does not prevent silver
migration in ion implantation experiments. Silver, however, can be immobilized at SiC grain

boundaries; silver, in intimate contact with SiC grain boundaries, did not migrate.

The silver concentration in this work was far above that which would be expected to exist in
typical TRISO-coated particle fuel. The annealing temperature, however, was in the same range
as the post-irradiation annealing studies used to derive diffusion coefficients for coated particle
fuel. Also important to note is that the final recrystallized SiC grain structure is similar to that
fabricated in typical SiC layers in tested TRISO-coated particle fuel. While there are variations
in some of the coating parameters, the SiC used in the current experiments and the SiC from
previous fuel tests were coated using a high temperature CVD process resulting in high-density
B-SiC with a fine-grain structure. The results from this experiment are, therefore, applicable to
silver migration in CVD SiC in typical TRISO-coated particle fuel. A comparison of the
recrystallized SiC from the current experiments and a typical CVD SiC coating is shown in

Figure 3-21.
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Figure 3-21. Comparison of typical SiC microstructures from a) a typical SiC coating and b)
the current ion implantation experiments (Carter, Davis, and Bentley 1984).

Conclusions

The results of this work clearly show that silver does not move by diffusion, either in the matrix
or along the grain boundaries, in CVD SiC for the conditions studied. Even silver near grain
boundaries in the original SiC material, observed just behind the recrystallized zone in Figure 3-
18a and Figure 3-20 did not migrate. There is considerable grain boundary area in the
recrystallized portion of the SiC, but no silver was detected outside of its original deposition
area. Recrystallization of the silicon carbide grains during annealing and the high vacancy
concentration resulting from implantation damage could have provided many pathways for silver

diffusion and migration during annealing, but no silver movement was measured.

Typical SiC coatings for fission product barriers in TRISO fuel consist of fine-grained SiC,
usually slightly columnar, with grain sizes on the order of a few micrometers. The desired grain
length is small enough such that the total width of the SiC layer consists of many grains and the
probability of one grain extending through the total thickness is very small. The SiC grains in

the recrystallized portion of the silicon carbide, where most of the silver remains, are fine
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grained, slightly columnar, and have grains sizes less than 1 pum. This silicon carbide exhibits
characteristics very similar to the desired characteristics of silicon carbide coatings in typical
TRISO fuel for high-temperature gas reactors and silver migration did not occur. Additional
work is required to identify the exact release path for silver in silicon carbide and to understand

its cause and how to mitigate its effects.

Spherical Diffusion Couples

Goals and Background

The goals of the experimental program were to directly witness silver diffusion and measure
silver concentration profiles in silicon carbide. Two types of experiments attempted to directly
measure silver concentration profiles in silicon carbide as a result of diffusion or migration. The
former section discussed the ion implantation results and this section reviews the results of

spherical diffusion couple tests.

The aim of the spherical diffusion couple tests was to observe silver diffusion in silicon carbide
by measuring silver concentration profiles in either a thin SiC coating over a hollow graphite
shell or in a thick SiC shell. A lack of evidence, however, of silver migration in the silicon
carbide layer resulted in a proposed change in the assumed mechanisms and a change in the
goals of the experimental program. The new goals were to understand the causes of silver
migration in silicon carbide and to determine what mechanisms govern silver release from

silicon carbide.

As discussed in detail in this section, silver, although released in measurable quantities, did not
diffuse through silicon carbide. Vapor migration is proposed as an alternative mechanism to
solid-state diffusion to explain silver release in the current diffusion couples and in typical

coated fuel particles.

Experimental Setup and Fabrication

A standard diffusion couple consisting of a diffusing substance plated on a substrate is not
sufficient for silver experiments because of silver’s low melting temperature and high vapor
pressure. Silver plated on silicon carbide will evaporate from the surface or escape through any
open edges rather than diffuse into the substrate material at temperatures near or above 960°C,
silver’s melting temperature (Lide 1990). A spherical diffusion couple design attempted to

resolve this problem by enclosing silver within a silicon carbide coated sphere.
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Diffusion Couple Design

Hollow shells, fabricated from either graphite or silicon carbide, formed the basis of the
spherical diffusion couple. Two half shells, fabricated with an overlapping seam, mated together
to form a 1.9 cm hollow sphere with 0.076 cm thick walls. Silver powder (99.9995% purity, -22
mesh) placed inside one half shell was completely enclosed inside the diffusion couple after a
silicon carbide coating was deposited on the outside of two joined half shells. Figure 3-22 shows
two open half shells, Figure 3-23a shows one half shell with silver powder, and Figure 3-23b

displays a complete diffusion couple with a silicon carbide outer coating.

Graphite shells, selected for the best coefficient of thermal expansion matching to silicon
carbide, were used in the first and second sets of diffusion couples, types SiC-1 and SiC-2. The
graphite shells were fabricated from machined graphite with approximately 13%-15% porosity.
A third set of diffusion couples, type SiC-3, were fabricated with chemical vapor deposited
silicon carbide as the substrate shell. An outer coating of CVD SiC sealed the silver inside all of

the substrate shells.

Figure 3-22. Graphite shell substrate for the diffusion couples. Silver powder is placed inside
the shell then SiC is coated on the outside.
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a) Silver powder in graphite half shell ~ 5) SiC coating over graphite shell

Figure 3-23. Diffusion couple fabrication steps including a) loading with silver powder and b)
coating with SiC.

The graphite shell of the diffusion couple types SiC-1 and SiC-2 created some challenges for
silver migration analysis but also added some potential benefits. Among the challenges were the
numerous literature summaries which indicate that there is no holdup of silver in PyC or any
graphite material (Nabielek, Brown, and Offermann 1977). Over a long heating period a range of
fast silver diffusion coefficients in graphite adds only minimal uncertainty, but for short heat
treatments, the finite silver diffusion rate in the graphite shell needs to be considered. A more
significant challenge, however, appeared to be the lack of silver wetting on graphite. If silver
doesn’t wet graphite then molten silver at the bottom of the diffusion couple during heating will
not be able to penetrate the graphite surface and, hence, will not come into contact with the SiC
layer. A major difference between the diffusion couples and typical coated particle fuel is the
size of the diffusion couples. Typical diameters are on the order of 1 mm for coated fuel
particles and 2 cm for the diffusion couples. In addition, the thickness of the SiC layer is greater
on the diffusion couples (60-150 um) than in typical coated fuel particles (35-40 pum). This
significant difference in size affects the stress state of the silicon carbide layer and is also

important when calculating the probability of a critical flaw occurring in a given volume of SiC.

Even though the uncertainties of silver transport through the graphite layer introduce challenges
for analysis of these diffusion couples, advantages of this design include eliminating edge effects
by trapping the silver inside the diffusion couple and a chemical similarity to fuel particles.
Coated fuel particles generally contain a porous graphite buffer layer around the kernel and a
high-density pyrocarbon layer surrounding the buffer, before the SiC layer. Although the

diffusion couple shells consist of machined graphite and not pyrocarbon, the environment is
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chemically similar to that existing for silver in coated particles. Even though the exact diffusion
rate of silver in graphite materials is not known, the porosity in the graphite shells is within the
range of connected porosity, suggesting that silver in the graphite layer can move quickly
through the connected porosity by vapor transport and be transported to the SiC inner surface

rather easily.

Replacing the graphite shell in favor of a silicon carbide shell provided a more direct
investigation of silver migration in SiC and eliminated the uncertainties associated with silver
migration through the graphite layer. In the SiC-3 type diffusion couples, silver was in direct

contact with the silicon carbide, providing access to direct measurements on the SiC shell.

SiC Fabrication

The silicon carbide outer coating on the diffusion couples was formed by chemical vapor
deposition using MTS (methyltrichlorosilane, CH;SiCl;) as the feed gas with a hydrogen carrier
gas. The standard SiC coating used on diffusion couple types SiC-1 and SiC-3 was deposited at
1200°C and 0.1 atm (75 torr) with a total flow rate of 75cm’/min and an H,/MTS ratio of 7.5.
The standard coating run lasted 6 h. Raising the deposition temperature to 1300°C and
increasing the H,/MTS ratio to 12.5 created a modified SiC coating deposited on diffusion
couple type SiC-2. Each coating run for the SiC-2 samples lasted 9.25 h. All of the diffusion
couples consist of two hemispheres, both either graphite or silicon carbide, loaded with silver
and coated with silicon carbide. The three types of diffusion couples are referred to as SiC-1,
SiC-2, and SiC-3 and are briefly summarized in Table 3-4. A modified SiC coat was deposited
on some of the graphite-shell diffusion couples to permit a comparison of silver diffusion in SiC

with different grain structures, one of the original objectives of the experimental program.

Table 3-4. Summary of diffusion couple set parameters.

SiC-1 SiC-2 SiC-3
Shell Substrate graphite graphite SiC
SiC Coating standard modified standard
Microstructure B-SiC - with a-SiC B-SiC

The silicon carbide coating on diffusion couple types SiC-1 and SiC-3 consisted of columnar
grains radially oriented, growing from the inner surface towards the outer. The grain sizes, as

estimated from optical and transmission electron micrographs seen in Figure 3-24, range from
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small equiaxed grains near the inner surface, on the order of 0.5 um to 1 um, to long columnar

grains on the order of a couple micrometers wide by tens of micrometers long.

substrate

a) Optical micrograph of Agl2, b) AEM of Ag21 after heating at 1400°C for 240 h
unheated

Figure 3-24. SiC coatings consist of columnar grains with some small equiaxed grains near the
substrate interface; a) an optical micrograph of unheated sample Agl2 shows typical fan patterns
and b) a transmission electron micrograph of sample Ag21 after heating shows small equiaxed
grains near the inner surface.

Heat Treatments

The heat treatment temperatures were selected to cover the higher range of typical fuel operating
temperatures, between 1050°C and 1600°C, a temperature range also applicable to some
accident analyses. Many of the heat treatments focused on the higher end of the temperature
range, around 1500°C, to accelerate silver migration. Based on silver diffusion coefficients
reported in the literature, the heat treatments conducted around 1500°C should have produced

measurable silver concentration profiles.
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Two high-temperature graphite-based furnaces were used for the diffusion couple heat
treatments. Each was a Red Devil™ vacuum furnace, seen in Figure 3-254, from the R.D. Webb
company, heated by a carbon-carbon heating element inside fibrous graphite insulation block. A
solid graphite retort, shown in Figure 3-25b, sits above the heating element and defines a work
zone 9 cm in diameter and 5 cm tall (R.D. Webb Company 2004). A solid graphite lid covers
the retort during operation. The furnaces were maintained under medium vacuum (on the order

of millitorr) during the diffusion couple heat treatments.

a) furnace and controller b) solid graphite retort

Figure 3-25. R.D. Webb Company Red Devil™ furnace used for the diffusion couple heat
treatments: a) furnace and controller, b) solid graphite retort.

In the Webb furnace, the heating element is situated beneath the solid graphite retort. This
arrangement results in a thermal gradient inside the working zone during heating with the bottom
of the graphite cup hotter than the top. During the heat treatments, 0.6 cm thick graphite plates
with approximately 0.6 cm holes held the spherical diffusion couples in a secure position and
also provided adequate physical contact between the retort and the sample, likely ensuring good
heat transfer from the retort to the bottom of the diffusion couple. In this arrangement, the top of
the diffusion couple was not in contact with any surface of the furnace and radiated heat from the
diffusion couple to the cooler graphite lid on the retort, leading to an approximately 10°C-15°C
temperature drop from the bottom to the top of the diffusion couple (R.D. Webb Company
2004). Heat treatments covered temperatures from 1050°C to 1700°C for cumulative times
ranging between 2 h and 1760 h. Twenty-seven samples were annealed in all and seven of those
samples were heated twice to obtain intermediate, nondestructive data, such as mass
measurements, leak rates, and X-ray images, while accumulating longer anneal times. The
uncertainty in heating temperature is £15°C due to the hot zone geometry and thermocouple

location and the uncertainty in heating duration is +5 min. Heating rates varied from 4°C/min to
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25°C/min with most of the diffusion couples heated at rates between 4°C/min and 10°C/min.

Cooling rates were controlled by the natural cooling of the furnaces, typically about 5°C/min.
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Figure 3-26. Heat treatment conditions for SiC-1, SiC-2, and SiC-3 diffusion couples.

Results and Discussion

Silver Distribution in Silicon Carbide

Various techniques aimed at detecting and analyzing the silver distribution in the diffusion
couples were employed. None of the techniques used detected any silver in the silicon carbide

layer below a detection limit of approximately 100 ppm.

X-ray Analysis

X-ray analysis and CT-scanning provide images highlighting atomic number contrast in the
diffusion couples. Since silver has a much higher atomic number (Z=47) than either silicon
(Z=14) or carbon (Z=6), these techniques provide a qualitative picture of the silver location in
the diffusion couple. Both X-ray and CT imaging show solid, excess silver in the bottom of the
SiC-1 diffusion couples and dispersed silver in the upper portion of the couples. Both X-ray
radiography and CT-scanning are non-destructive techniques that take advantage of atomic
number differences to distinguish between silver and silicon carbide in the diffusion couples.

Additionally, CT-scanning is capable of rendering digital cross-sections of a sample.
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Unfortunately, due to the limited resolution of X-ray radiography and CT-scanning and the thin
SiC layer (relative to the overall size of the diffusion couple), the SiC coating could barely be
distinguished using these techniques. The images and digital reconstruction of cross-sectional
slices do, however, clearly show that silver has penetrated the graphite shell in the upper portion
of the SiC-1 diffusion couples where the vapor existed (and was coolest), but not in the bottom

underneath the molten silver pool.

Figure 3-27 shows an X-ray image from the CT-scan of sample Ag32 after heating for 100 h at
1500°C. Excess solid silver remains in the bottom of the diffusion couple after heating, a clear
indication that sufficient silver was present during heating to maintain equilibrium between the
liquid and vapor phases. A halo of silver exists in the upper portion of the couple, but silver is
only detected in the graphite shell, not in the SiC coating, as seen in an optical micrograph cross-

section of the upper portion of a typical diffusion couple in Figure 3-28.

Silver particles can be seen at the seam location using X-ray techniques. Further investigation of
the inner surface of the diffusion couple near the seam area using optical stereo microscopy
shows discrete silver particles in the open spaces of the seam, between the overlapping lips of

the two half shells.
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Figure 3-27. CT-scan image of a graphite-shell diffusion couple (sample Ag32) shows silver
dispersed in the graphite in the upper region, silver particles in the seam, and excess silver at the
bottom of the couple.

coating

Figure 3-28. Optical micrograph of the cross-section of the top of sample Ag23 shows
condensed silver in graphite pores but not in the SiC coating.
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X-ray analysis and CT-scans of the SiC-3 diffusion couples with SiC substrate shells show a
spattering of silver at the inner surface of the half shell, but no silver penetration into the SiC
shell or outer coating. There was no evidence of silver diffusion into the SiC substrate shell

either below the high-concentration molten pool or above the low-concentration vapor phase.

X-ray images and CT-scans show silver in the upper potions of the SiC-1 and SiC-2 diffusion
couples after heating. This silver appears finely distributed around the upper third of the
diffusion couples, but no silver was identified in the SiC coatings during digital reconstructions
of the cross-section planes. No silver was identified in the SiC substrate shell or SiC coating in
the SiC-3 diffusion couples. Discrete silver precipitates were identified in the free space of the
seams of the diffusion couples. The excess silver remaining after heating is clearly visible in X-
ray images and CT-scans, but there is no evidence of silver transport into the graphite or SiC

substrate shells at the bottom of the diffusion couples.

Although the X-ray and CT techniques provide good qualitative, non-destructive images of the
silver location in the diffusion couples, they require a fairly high concentration of silver in SiC to
be detectable and are not readily applicable for quantitative analysis. Additional techniques were

required to look for lower silver concentrations in the SiC shells and coatings.

XPS Depth Profiles

To achieve the goal of observing silver diffusion by measuring characteristic concentration
profiles after heating, XPS (X-ray photoelectron spectroscopy) was employed. XPS measures
not only elemental components of a sample, but also determines bonding information,
distinguishing, for example, between free silicon and silicon bound as silicon carbide. XPS
measures concentrations at the surface of a sample and by alternating measurements with

sputtering to remove material obtains a depth profile. XPS profiling through the diffusion
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couples attempted to measure the concentration profile due to diffusion and observe signs of

silver migration through silicon carbide.

The detection limit for silver in the XPS analyses was approximately 100 ppm (atoms silver per
total atoms measured). Silver may have been present in the SiC layers in concentrations less
than 100 ppm, but anything greater than 100 ppm would have been detected during XPS
concentration depth profiles. The highest silver concentrations existed in the bottom of the

diffusion couples where solid silver formed a molten pool during heating.

The graphite substrate shell was removed by oxidation to reveal the inner surface of the SiC
coating for XPS analysis in the SiC-1 and SiC-2 diffusion couples. For the SiC-3 diffusion
couples, XPS measurements were obtained starting at the inner surface of the SiC substrate shell.
Sample areas from both the top and bottom of selected diffusion couples were analyzed using
XPS. No silver was detected, above the detection limit of 100 ppm (atoms of silver per total
atoms measured) in the silicon carbide coating of and of the samples and no silver was detected

in the SiC shell of the SiC-3 samples.

The density of the molten silver at the bottom of the diffusion couples is given by Equation (3-1)
(Lide, 1990). At 1500°C, the density of molten silver in contact with the SiC shell in the SiC-3
diffusion couples was 8.8 g/cm’. The expected concentration profile through the SiC shell using
the diffusion coefficient recommended by Amian and Stover is shown in Figure 3-29.

Concentrations of this magnitude are easily detectable by XPS.

_ -4 1 gm
P, =(9.320-9-10 ?(T—Tm))cm3 (3-1)
where  py, = density of liquid silver at temperature T (gm/cm’),
T = Temperature (K), and

T, melting temperature (962°C, 1235 K).
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Figure 3-29. The expected silver concentration profile in the SiC shell after 500 h at 1500°C
should have been easily detectable.

Incompatibility of the molten silver with the graphite shell may have prevented silver access to
the SiC coating in the SiC-1 diffusion couples, but this should not have been a problem in the
SiC-3 couples with SiC shells. Even after heating for 500 h at 1500°C, no silver was detected in
the silicon carbide shell, at concentrations greater than 100 ppm, at the top or bottom of the
diffusion couple. If silver diffused at rates in the range reported in the literature, XPS should
have been able to measure characteristic concentration profiles. The lack of any silver detection
in the SiC coatings or shells was an unexpected result and runs counter to the presumed diffusive

mechanism.

XPS analysis provides quantitative chemical analysis over a fairly large area of the diffusion
couple. The analysis area used for the XPS analysis measured approximately 800 pum in
diameter. The concentration profiles collected during XPS analysis average the constituents in
an area very large compared to the typical SiC grain size. To investigate these couples on a finer

scale, higher magnification techniques were required.
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Electron Microscopy Analysis

SEM (scanning electron microscopy) and EMPA (electron microprobe analysis) both clearly
show silver penetration in the upper portions only of the SiC-1 and SiC-2 diffusion couple
graphite shells. Neither analysis tool detected any silver in the SiC coating. Silver was observed
near the graphite-SiC interface, as seen in Figure 3-30, but no penetration into the SiC coating

was found.

Figure 3-30. Scanning electron microscopy reveals silver as bright white areas in the upper
portion of sample Ag20 after 120 h at 1500°C.

Silver was easily detected in AEM (analytical electron microscopy) analysis of the graphite
shells of SiC-1 sample Ag21 after 240 h at 1400°C and SiC-2 sample Ag39 after 400 h at
1500°C. The AEM analyses were performed on a Philips CM300 equipped with an EDAX X-
ray detector for elemental analyses. Silver fills many of the graphite pores near the graphite-SiC
interface. In sample Ag21 (SiC-1 diffusion couple), AEM clearly reveals silver at the graphite-
SiC interface, as seen in Figure 3-31a, but not in the SiC coating. AEM provides high
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magnification images of the SiC grains and shows details of the fine-grained B-SiC structure, as

seen in Figure 3-315.

Silver

Grm"

a) Large silver accumulations at the graphite- b) The SiC coating contains small, equiaxed
SiC interface grains, but no silver

Figure 3-31. AEM of SiC-1 sample Ag21lafter 240 h at 1400°C shows a) silver at the graphite-
SiC interface and b) small SiC grains.

Sample Ag39, a SiC-2 diffusion couple fabricated according to the modified CVD conditions
discussed in Section 0, consisted of large, blocky SiC grains near the graphite-SiC interface and
thin dendritic grains further out into the SiC coating, oriented in the radial direction. AEM
analysis detected silver decorating and bracketing the large SiC grains, as seen in Figure 3-32
and Figure 3-33, but there was no silver in the dendritic SiC grains. The diffraction patterns for
both the large, single crystals and the polycrystalline dendritic regions index to 3-SiC, as seen in

the diffraction patterns in Figure 3-32.
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Figure 3-32. AEM of SiC-2 sample Ag39 after 400 h at 1500°C shows dendritic SiC grains
along with large SiC crystals.

The large SiC crystals appear somewhat misaligned with each other, the surrounding graphite,
and the dendritic SiC grains, providing room for silver migration around the large, blocky SiC
grains. No silver, however, was observed in the dendritic SiC grains beyond the interface
between the large, blocky crystals and the dendritic grains, as seen in Figure 3-32 and Figure 3-
33a. These observations suggest that large SiC grains, present in the modified SiC-2 coating,
and the mismatch between the different types of SiC grains provide pathways for silver transport
not observed in fine-grain equiaxed or dendritic structures in the standard SiC coating used in

these experiments and seen in the AEM of sample Ag21 in Figure 3-31.
The mismatch between poorly aligned SiC crystals likely increases residual stresses and may

lead to localized cracking within the SiC coating which could provide open, direct pathways for

silver escape. Although the SiC microstructure observed in the AEM analysis of SiC-2 sample
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Ag39 is not likely to be present in typical coated fuel particle SiC coatings, the ability of silver to
migrate around poorly aligned crystals emphasizes the importance of silver transport along short-
circuit paths through SiC. Typical SiC coatings in coated fuel particles consist of many
individual grains and how well those grains fit and grow together during deposition may be
important for silver retention. The PyC and SiC coatings for typical TRISO fuel particles are
fabricated in fluidized beds and, although the overall deposition parameters are closely
controlled, a range of conditions exists within the fluidized bed. These variations could lead to
variations in the microstructure of the SiC coating within individual particles, possibly creating
regions or poorly aligned grains. Although the SiC microstructure seen in sample Ag39 is not
desired for typical SiC coatings, the apparent ease of silver transport around ill-fitted SiC grains

emphasizes the importance of localized SiC microstructure.
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Figure 3-33. AEM of SiC-2 sample Ag39 after 400 h at 1500°C shows a) silver at the
graphite-SiC interface and at the interface between large SiC crystals and dendritic SiC and b)
silver bracketing and decorating the large SiC crystals.

Leak Testing

Standard helium leak testing of the diffusion couples showed an increase in leak rates for all

samples after heating. These leak rates indicate a change in the diffusion couples during heating,
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possibly providing a silver escape route other than grain boundary diffusion, as previously
assumed. Silver release due to grain boundary diffusion would not show an increase in leak rate,

however, a leak rate does indicate an open mechanical path.

In direct-read leak testing, the diffusion couple was soaked in a pressure chamber under 75 psi of
helium for 20 min. During the soak period, helium entered the diffusion couple through any
open mechanical paths. After 20 min, the sample was quickly transferred to a leak detector.
This chamber was held under vacuum and a spectrometer was tuned to detect helium in the
sample chamber. Any helium that leaked into the diffusion couple leaked out in the vacuum
chamber and was detected by the spectrometer. The measured leak rate was recorded at 60 s and
120 s. An analytical fit, shown in Equation (3-2), was used to determine the predicted actual

leak rate of the samples (DOD, 1996).

P, eq Loat | M o Lawerr |M
Opews = Qeg "2 l—exp(—Qq " J -exp[—Qq - J (3-2)

ref Vsp Pief M He va Ref M He
where  Ques = measured leak rate of the tracer gas (He) (atm-cm’/s),
Q., = equivalent leak rate in air (atm-cm’/s),
P, = over pressure applied to sample (5.1 atm =75 psi),
P, = reference pressure (1 atm),
twar = soak time at pressure (1200 s),
taen = dwell time between pressure release and spectrometer inspection
(measurements recorded at 60 s and 120 s),
M., = molecular mass of air (29 g/mol),
My, = molecular mass of helium (4 g/mol), and
Vp = volume of the specimen (cm”).

The results of helium leak testing, shown in Figure 3-34, show that the leak rates for all types of
samples were greater after heating than before. In general, the SiC-1 samples had low leak rates
before heating, but high measured leak rates after heating. The SiC-2 samples had high leak
rates before heating and even higher leak rates after. The SiC-3 samples received at least two
coatings of SiC to achieve low leak rates in the as-fabricated samples. The leak rates for the
SiC-3 samples increased after heating, but not as much as the increase for the SiC-1 samples.

These qualitative results are listed in
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Figure 3-34. Helium leak testing on all types of samples. Leak rates increase after heating for
all samples, with SiC-3 samples having the lowest increase.

Table 3-5. Qualitative assessment of leak rates. All samples measured higher leak rates after
heating.

Sample Type Substrate SiC Coating Measured Leak Rates'
Shell Before Anneal After Anneal
SiC-1 graphite standard low’ high’
SiC-2 graphite modified high higher
SiC-3 SiC standard low medium

"low =1 E-7 to 1 E-6 atm-cc / s

medium =2 E-6 to 1 E-4 atm'cc /s

high =2 E-4 to 8 E-2 atm'cc /s

Zexception: sample Ag62 had a medium leak rate
Jexception: sample Ag30 had a medium leak rate

Since helium can only leak through mechanical paths (helium does not diffuse through SiC) the
leak testing results indicate increases in crack paths after heating compared to before heating. A
review of the results for the three types of samples shows that the SiC-1 diffusion couples had
mostly low leak rates before heating with generally large increases after heating. The SiC-2
samples had mostly large leak rates before heating, indicating poor quality of the modified SiC
coating. The SiC-3 diffusion couples started with low leak rates and experienced modest
increases after heating. Overall, the SiC-1 and SiC-3 couples had the best leak rates before
heating while the SiC-3 samples had the lowest leak rates after heating. Leak testing measures
the infiltration of helium into the sample under pressure and helium leaking out of the sample
under vacuum. In the SiC-1 and SiC-2 diffusion couples, the SiC coating surrounds a porous
graphite substrate shell; in the SiC-3 couples the SiC coating surrounds a fully dense SiC
substrate shell. A crack anywhere in the SiC coating in SiC-1 and SiC-2 diffusion couples
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would allow helium infiltration into the interior of the diffusion couple. Helium is impermeable
through solid, intact SiC, so in the SiC-3 diffusion couples, only cracks in the SiC coating near
the seam between the two SiC half shells would give helium access to the couple’s interior

volume.

Leak testing after heat treatment does not identify when leaks become active. There is no
information on the time dependence for this data. No correlation between the duration of the
heat treatment and leak rate appears. When a leak path opened during the heating and cooldown
process cannot be determined from leak testing. Leak paths created near the end of a heat
treatment or during the cooldown process would result in large measured leak rates after heating

but may result in very little mass loss.

Mass Loss

Mass measurements of the samples before and after heat treatment on a Mettler AG245 scale
with 0.0001 g resolution show that the diffusion couples lost weight during annealing.
Contributors to mass change may include silver loss, oxidation of silicon carbide from the
diffusion couple’s surface, interactions between SiC and other contaminants in the furnace, and

evaporation of water vapor adsorbed to the diffusion couple.

Since the furnace operated under medium vacuum, there should have been little oxygen available
to oxidize the surface SiC. Any oxidation, however, of SiC to the volatile SiO would result in a
net mass loss. A control sample without any silver was heated to estimate this effect along with
any other mass effects. Reporting mass loss as a fraction of the initial silver inventory attempts
to normalize all of the diffusion couple test results since varying amounts of silver were loaded
into the samples. Even though the total amount of silver varied among the diffusion couples, in
all but two cases (samples Ag53 and Ag63) there was excess silver available during the entire

heat treatment to maintain equilibrium between the molten silver pool and the silver vapor.

Graphite-Shell Diffusion Couples

Sample Ag56, an SiC-1 type diffusion couple, was fabricated as a control sample with no silver
to estimate any contribution to mass change from surface effects, contamination in the furnace,
or oxidation of the silicon carbide. After heating for 200 h at 1500°C, control sample Ag56
exhibited a mass loss of 0.0061 g. Cutting a slice off sample Agl7, another SiC-1 type diffusion

couple, created a second control sample. Sample Agl7 recorded a mass loss of 0.0071 g after
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heating for 400 h at 1500°C. With one end of the diffusion couple removed, the inner graphite
surface of sample Agl7 was exposed. This additional exposed surface area could influence the
total amount of mass change based on any oxidation of the graphite layer during heating. Based
on the mass loss of the two SiC-1 control samples, a possible threshold appears around 0.006 g;

any mass loss below this level is most likely due to surface effects, not silver loss.

In the population of SiC-1 diffusion couples, mass loss ranged from 0.0013 g to 0.3297 g,
equivalent to a range of 0.5% to 101% fractional release. The SiC-2 diffusion couples suffered
mass loss between 0.0110 g and 0.3009 g, equivalent to fractional releases between 43% and
115%. Reported fractional release values greater than 100% are due to uncertainties in the
measurement and from other possible interactions, such as oxidation at the surface, resulting in
additional mass loss beyond silver escape. As can be seen in Figure 3-38 @ and b, the different
diffusion couples cover a wide range of fractional loss values with some samples retaining nearly
all of their silver inventory while others suffer complete loss. This range of results does not
support the assumption of diffusion as the controlling mechanism for silver release. The
diffusion couples were all fabricated using the same silicon carbide deposition method. Some
variation occurs between coating batches when making these diffusion couples, but this is
probably on the same order as variations within a single coating batch due to fluctuations
between the top and bottom and between the center and outside edges in the fluidized bed. For
similar diffusion couples with high-density SiC with similar microstructure, a diffusion
mechanism does not explain the 0 to 100% range of fractional release. As discussed in
Appendix A, variations in grain structure could account for roughly a factor of 2 variation in the
diffusion coefficient, but cannot account for the difference of 1-2 orders of magnitude or for the

variation between 0% and 100% release.

SiC-Shell Diffusion Couples

SiC-shell diffusion couples (SiC-3) all had small mass losses recorded after heating. The mass
loss ranged from 0.0007 g to 0.0037 g for heat treatments at 1350°C and 1500°C for 200 h to
1500 h. These values for mass loss are measurable, but may be within the limits of uncertainty
for both the measurement and due to other mass loss phenomena in the furnace including water

vapor loss from the couple surface and oxidation of SiC from any oxygen in the furnace.

The SiC outer coating on the SiC-3 couples was deposited using the same procedure under the

same conditions as the SiC coating on the SiC-1 couples so changes in the diffusion couple
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performance are not due to drastic variations in the SiC coating. The SiC-1 and SiC-3 diffusion
couples, however, differ in the substrate material used as the basis of the diffusion couple. The
SiC-1 and SiC-2 diffusion couples consist of a porous graphite shell and the SiC-3 couples
contain fully dense SiC as the substrate shell. Silver vapor can migrate through the porous
graphite shell and, therefore, has access to the entire inner surface of the SiC outer coating in the
SiC-1 and SiC-2 diffusion couples, but in the SiC-3 diffusion couples silver has access only to
the outer SiC coating in the vicinity of the gap at the SiC shell seam. This difference in silver

access in shown schematically in Figure 3-35.
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a) Silver has access to entire SiC inner surface  b) Silver only has access to SiC near the seam
in SiC-1 and SiC-2 couples with porous in SiC-3 couples with dense SiC shells
graphite shells

Figure 3-35. Schematic of diffusion couple cross-section showing the silver access to the SiC
inner surface as white bands (not to scale).

The gap between the overlapping rim of the two SiC half shells forms the basis of the area
normalization for the SiC-3 diffusion couples. This gap, shown in Figure 3-36, provides a direct
pathway for silver vapor to reach the SiC outer coating. Any flaws in the SiC coating in the
region near the seam in the SiC-3 diffusion couples will allow silver release during heating.
Based on the gap observed in Figure 3-36, a band of SiC coating with a 150 um width around
the entire diameter of the diffusion couple is assumed to be accessible to the silver vapor during
heating. The ratio of the area of the band surrounding the seam in the SiC-3 couples to the total
SiC coating area in the SiC-1 couples provides the area normalization factor of 0.0079. The gap

at the seam in a graphite-substrate diffusion couple is shown in Figure 3-37. The gap at the seam
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is not considered in the graphite-substrate diffusion couples because the graphite shell itself is

porous, allowing silver access to the SiC coating.

SiC powder pressed
nt\seam

seam gap

SiC outer coating
(2 layers)

SiC substrate shell

150 microns

150 microns

Figure 3-36. Optical micrograph of sample S09 shows the gap at the SiC shell seam.
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Figure 3-37. Seam between the graphite substrate shells in sample Ag29.

Initially, it appears that the SiC-3 diffusion couples have much lower mass losses than the SiC-1
and SiC-2 type diffusion couples. Adjusting the SiC-3 mass loss results for the fraction of the
SiC area actually accessible to the silver, however, produces values in the same range as the SiC-

1 and SiC-2 diffusion couples as seen in Figure 3-38.
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Figure 3-38. Fractional silver loss spans the range from 0% to 100% in the diffusion couples
with large variations in each type of diffusion couple design.

No direct correlation between the mass loss and leak testing results is evident, as shown in
shown in Figure 3-39. In general, the leak rates associated with the samples with high fractional
release are very high, but all the leak rates greater than 1E-4 atm-cc/s are large leak rates.
Unfortunately, when a leak path becomes active during testing is not known for these diffusion
couple experiments. Leak paths that occur either during fabrication or handling or early during
heating would be expected to result in large mass losses. However, paths that develop near the
end of heating or during cool down would result in only small mass losses. Due to the variation
between individual samples and the lack of time-specific data, further conclusions cannot be

drawn from the mass loss vs. leak rate plot in Figure 3-39.
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Figure 3-39. Fractional silver mass loss shows no direct correlation with leak rate
measurements. In general, all of the leak rates measured after heating were very large and would
allow significant mass loss during heating.

Effective Diffusion Coefficient Calculations

Even though the analysis techniques aimed at observing silver diffusion found no direct evidence
of silver diffusion in silicon carbide, it is still instructive to evaluate diffusion coefficients from
the spherical diffusion couple mass loss data. The mass loss from the current experiments was
converted to effective diffusion coefficients using an analytical expression for release through a
thin spherical shell, similar to the procedure used to calculate effective diffusion coefficients in
the literature. The diffusion couples have a range of SiC coatings approximately 40-120 um
thick with overall radii on the order of 0.95 cm and qualify as thin spherical shells for the
purposes of this analysis. The graphite shell in the SiC-1 and SiC-2 and the SiC shell in the SiC-
3 diffusion couples were neglected for this calculation. Considering only the CVD SiC coating
on the outside of the diffusion couples, an effective diffusion coefficient was calculated, using
Equation 3-3 for different limits of the source silver concentration. The results are shown in

Figure 3-40.
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Equation 3-3 is the analytical solution for mass release from a thin spherical shell (Crank 1975).
The diffusion coefficient necessary to produce the observed mass loss can be calculated from the
difference in mass as measured before and after the diffusion couple heat treatments (Q,), the
known dimensions for each diffusion couple, and the silver concentration level at different areas
in the couple. Three different values of the silver concentration have been considered: the first is
the concentration of silver in the molten pool in contact with the silicon carbide at the bottom of
the diffusion couples; the second is the limit of detection of XPS, the technique used to measure
concentration profiles in the silicon carbide coatings and shells; and the third is the silver
concentration in the vapor phase in contact with the silicon carbide in the upper portion of the

diffusion couple.

1\ 2 2
0, = dzablp-a)c,.| Lot 2§ exp{—%ﬂ (Eq. 3-3)

where @, = mass released (g),
a = inner radius of spherical shell (m),
b = outer radius of spherical shell (m),
C, = source concentration of silver at » = a (g/m’),
D = diffusion coefficient of silver in SiC (mz/s), and
t = duration of heat treatment (s).

Figure 3-40 shows the band of effective diffusion coefficients reported in the literature and
discussed in Appendix A for comparison to the current data. Diffusion coefficients in the range
of 10™"° m%/s to 10™* m?/s at 1500°C are calculated from the silver concentration at the interface
between the molten pool and the SiC at the bottom of the diffusion couple. These values are in
the same range as those reported in the literature, but as discussed in the section on silver
distribution, no silver was observed in the SiC coating at the bottom of the diffusion couple.
Therefore, silver release by diffusion according to the rates reported in the literature did not

occur in these experiments.

If the silver concentration, however, were just below the XPS detection limit of 100 ppm, XPS
would not have measured silver concentration profiles in the SiC coating. If silver diffused
through the SiC coating with a source concentration of 100 ppm diffusion coefficients would
have had to be in the range of 10™* m?s to 2x10™"° m%s at 1500°C, significantly higher than
those previously reported for silver in SiC. If silver diffused through the SiC at the top of the

diffusion couples where the source concentration was approximately 1 ppm, the diffusion
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coefficients necessary to accommodate the observed mass loss would generally be in the range
of 10" m%s to 107 m*/s at 1500°C. The source concentration of the silver vapor in the upper
portion of the diffusion couple, used as C; in Equation 3-3, was derived from the equilibrium

silver vapor pressure during each experiment.

The calculated diffusion coefficients from the current tests using the silver source concentration
values derived from the XPS detection limit of the vapor phase during heating are not consistent
with the previously derived diffusion coefficients and the assumptions of grain boundary
diffusion. Although the concentration profile measurements using XPS had a detection limit of
100 ppm, it is likely that any silver concentrations near that limit would have been detected
either during XPS analysis or during AEM or other measurement techniques. If silver diffused
through the SiC coating from the vapor source, the diffusion coefficients would have had to have
been between 6 and 7 orders of magnitude greater than those previously accepted to support the
observed mass loss. While the results collected so far cannot disprove silver diffusion from the
low-concentration vapor source in the upper portion of the diffusion couple, typical diffusion
coefficients reported previously in the literature do not support the total amount of silver released
during the current experiments. Silver may diffuse in low concentrations, but another
mechanism must be active to provide a pathway for the amount of silver loss measured. It is
more likely, especially when considered together with the leak testing results discussed earlier,

that silver vapor migrated through cracks in the SiC coating.
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Figure 3-40. Effective diffusion coefficients calculated from diffusion couple mass loss are
much greater than those previously reported in the literature.

Stress Analysis

Silver clearly escaped from some of the diffusion couples in the current experiments, but no
signs of classical diffusion were identified. Silver release via vapor migration through cracks in
the SiC coating fits the experimental observations, but a specific crack development sequence
has not yet been identified. One possible scenario is that one or more cracks developed during
the thermal cycling between fabrication, heating, and cool down due to the mismatch in the

coefficients of thermal expansion between the graphite shell and the SiC coating.

A preliminary finite element stress analysis completed at the Idaho National Engineering and
Environmental Laboratory indicates that stresses in the diffusion couple can exceed the fracture
strength of the silicon carbide coating ( Miller 2003). The selection of the graphite shells aimed
at achieving the best possible match of the coefficient of thermal expansion (CTE) for both the
graphite and SiC. Ibiden ET-10 graphite, with approximately 15% porosity, has a CTE equal to
3.8 x 10°°/°C and the CTE for SiC is 2.9 x 10%/°C between room temperature and 100°C and 5.1
x 10°%°C at 1200°C. Figure 3-41 shows the stress state for a perfectly spherical diffusion
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couple, assuming a zero initial stress state during SiC deposition at 1200°C, cooling to room
temperature, a heat treatment at 1500°C for 200 h, and a final cool down. The thermal cycling as
shown in Figure 3-41 would cause stresses greater than the fracture strength of 480 MPa and

could lead to SiC cracking during cooling (Ho 1993).
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Figure 3-41. Stresses in SiC coating during thermal cycling due to differential thermal
expansion between the SiC coating and the graphite shell exceed SiC’s yield strength.

Preliminary analysis, though still inconclusive, indicates possible crack development in the SiC
coating. AFM (atomic force microscopy) analysis detected no signs of silver in the SiC shell or
coatings of two SiC-3 diffusion couples: S09, an unheated sample; and S22 after 500 h at
1500°C. Indications of ‘“nano-cracks”, however, were found in the heated sample, S22.
Between grains, at a level of detail on the order of nanometers, indications of cracks appear on
the order of angstroms wide, as shown in Figure 3-42. Additional AFM work is needed to verify
the presence of nano-scale cracks in the SiC coatings, but features such as these may offer a

silver transport pathway through SiC.
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Figure 3-42. AFM analysis reveals nano-crack features in the SiC coating of SiC-3 sample S22
after 500 h at 1500°C.

Vapor Migration and Literature Data

Results from the current experiments lead to the conclusion that silver release from the silicon
carbide coated diffusion couples is likely dominated by vapor migration through cracks in the
SiC coating, not classical diffusion as previously thought. If silver cannot diffuse through SiC in
the current spherical diffusion couples, then it cannot diffuse through similar SiC coatings in
typical coated particle fuel. While this may at first appear contradictory to the results from

previous literature reports, a reinterpretation of the literature data suggests some similarity.

As discussed in greater detail in Appendix A, silver diffusion coefficients have frequently been
derived from batch-averaged silver release measurements. When silver release is collected for a
large batch of particles during annealing, it is impossible to know individual particle silver
release. Gamma counting of individual particles attempts to evaluate fission product inventory
of each particle, but this process is time-consuming and has only been completed on small

batches (Bullock 1984). In previous tests, the total amount of silver release from a batch of

155



particles was averaged over all of the particles to arrive at the average release per particle. From
these data, diffusion coefficients were calculated assuming identical behavior within the batch.
Moreover, the activation energies for this data fell within the range characteristic of grain
boundary diffusion processes, lending support to the conclusions of silver diffusion in SiC

coatings.

If all of the particles, however, are not assumed to behave identically, as seen by the large
variation of fission product inventory measurements in the JAERI tests, other conclusions seem
viable (Minato et al. 1998). Reported silver mass loss from annealed particle batches varied from
about 0.4% to 29% of the total batch inventory (Amian and Stover 1983). Although these data
were equally attributed to all of the particles in order to calculate diffusion coefficients, the same
total mass loss could have been obtained from large vapor migration from just a few particles in
each batch. The example using the data reported by Amian and Stdver, discussed in Appendix
A, illustrates that complete silver release from just a few particles in a batch could produce the

same results that were interpreted as diffusion.

Summary of Silver Migration

Measurements before and after heat treatments show significant silver mass loss from the
diffusion couples, but measurements aimed at recording silver concentration profiles in the
silicon carbide coatings detected no silver. Leak rate increases after heating strongly suggest
mechanical paths for non-diffusive release. Taken together these results lead to the conclusion
that silver must have escaped from the diffusion couples through a vapor migration path. Silver
diffusion, if it occurs at all in intact silicon carbide, is extremely slow, much slower than
previously reported in the literature. Silver release from silicon carbide is controlled by vapor
migration through cracks in the silicon carbide. Had silver diffused from the source of molten
silver at the bottom of the diffusion couples, it would have been detected during concentration
profile measurements. Silver diffusion from the low-concentration vapor source cannot be ruled
out, but diffusion cannot account for the total amount of silver loss measured using the range of
diffusion coefficients reported in the literature. Vapor migration through mechanical pathways
accounts for the amount of mass loss, the extreme variation between samples, and the increase in

leak rates after heating.

As discussed in Appendix A, a reinterpretation of historic literature data indicates that it is

possible that silver releases in previous experiments likely resulted from large inventory losses
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from a few individual particles rather than small fractional releases assumed due to grain
boundary diffusion. Silver release values governed by vapor migration can still exhibit a
temperature dependence, not unlike those presented in the literature, due to the vapor pressure
driving force. The silver vapor pressure increases with temperature, increasing the driving force
for silver release during higher temperature tests. A weak trend between the current
experimental data and the product of the vapor pressure and duration of each test is seen in
Figure 3-43, but this temperature dependence may account for the temperature trends observed

in the literature.
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Figure 3-43. Silver fractional release displays a weak trend with the product of vapor pressure
and time during anneal.

Conclusions and Significance

Contrary to previous assumptions in the literature, silver does not diffuse, but rather likely leaks
through intact silicon carbide via vapor migration through cracks or flaws. The importance of
this new finding is that silver release in high-temperature gas reactors may be reduced by
improving silicon carbide quality. Only some of the diffusion couples released silver and it
appears that only some of the coated fuel particles reported in the literature released silver,

indicating that vapor migration is not endemic to all silicon carbide, but affects only certain
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particles. Preliminary findings from the current experiments suggest silicon carbide cracking
due to thermal cycling and a possible network of nanometer-sized cracks. If particles afflicted
with or prone to crack networks can be removed from the population to be irradiated, silver

release may be reduced.

The results of the current experiments that additional work is required to identify the exact
pathway for silver vapor release and that the test methods used to evaluate silver migration need
to be carefully reviewed. Care must be taken when applying large batch behavior to individual
particles. Particle variation is a natural consequence of the fluidized bed fabrication process and
the use of ceramic materials. Ignoring the variation in individual particle properties and
behavior and assuming identical behavior among all particles can produce misleading results.
Although large population tests are necessary and provide effective batch data, information on

specific transport mechanisms can be missed.

Assessment of Silver Transport in SiC

As discussed previously, the results of this research strongly suggest that classical diffusion does
not govern silver transport in apparently intact SiC. Although the bulk of the previous literature
on silver migration in silicon carbide presents results based on the assumption of diffusion, there
are still uncertainties in the data and some alternative explanations have been hinted at by other
authors, as discussed in Appendix A. There is no question that coated fuel particles release
silver under certain conditions; however, a new description is needed for silver release from fuel

particles since silver does not diffuse through intact SiC via classical diffusion.

Data collected during the current experimental program clearly demonstrate that silver does not
diffuse through intact silicon carbide. However, silver release does occur in both the current
spherical diffusion couple and previous coated fuel particle tests. As discussed previously, this

release is most likely due to vapor transport through mechanical cracks in the SiC layer.

The results of previous experiments, reported in the literature, characterize silver release from
coated fuel particles as the result of diffusion. For more than three decades, authors have
presented silver release data in the form of Arrhenius diffusion relationships. As discussed in

Appendix A, there have been doubts about the accuracy of solid-state diffusion as the actual
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mechanism controlling silver migration in SiC with some authors suggesting a “short-circuit”

path.

Leak testing results of this work provide evidence that cracks exist in the SiC coating of the
current diffusion couples. Although there is very little time data available to evince when cracks
developed, the cracks provide a plausible pathway for silver release in the current diffusion
couple experiments. Although the exact SiC crack formation scenario may be unique to these
diffusion couples due to the large volume of SiC present and the presence of a large
discontinuity at the seam of the diffusion couple, the existence of cracks in the SiC layer of the

diffusion couples suggests that silver escapes by means of vapor transport through cracks.

The interaction of all of the layers in the coated fuel particle and the retention of other fission

products in those layers, even when the SiC contains cracks, will be discussed in this section.

Uncertainty in the Literature

A detailed review of the state of knowledge in the literature regarding silver migration in silicon
carbide was presented in Appendix A. In general, silver release has been discussed in terms of
diffusion, but that representation is a useful tool rather than an exact description of the specific
mechanism itself. Numerous authors, while presenting silver release results in the form of
Arrhenius diffusion relationships, have suggested that silver release does not follow classical
diffusion. Nabielek presented silver release results from fuel particles that did not follow the
expected diffusive release and hypothesized rather that the SiC becomes progressively
transparent to silver due to traces of free silicon on the SiC grain boundaries (Nabielek 1976).
After a thorough review of the state of knowledge of silver release from coated fuel particles in
1992, McCardell et al. pointed out that “the technical community is not in complete agreement

on the exact mechanism for silver transport through SiC (McCardell et al. 1992)”.

Furthermore, a review of the overall literature data highlights the uncertainty of the silver release
mechanism. Within tests containing a single batch of particles that were all manufactured under
the same conditions, often in the same batch, silver release values vary from 0% to 100%. Some
variations in total release would be expected for a diffusive process due to variations in total SiC
thickness in each sample and variations in the specific microstructure and grain orientation

within the SiC layers, but those variations would not produce fractional release values spanning
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the entire possible range from 0% to 100%. Differences in SiC thickness or grain orientation
(i.e., total path length) could cause a change in total silver release of a few percent, but clearly do
not account for the large variation in release between samples within individual tests or the

overall range of diffusion coefficients reported.

Unresolved questions also remain regarding the method of data collection from silver release
experiments. In many of the experiments silver release was measured for a batch of particles. In
many cases, individual fission product inventories were not measured and the silver released was
assumed to have been distributed evenly among the particles in the test batches. This
assumption has worked reasonably well to characterize batch performance and has provided a
convenient tool for comparing test results between different types of fuel and between different

researchers at different labs.

In cases where individual fuel particles were measured, the silver release varied widely, in some
cases from 0% to 100% in the same batch and test. These types of results run counter to a
diffusive release mechanism and suggest that another mechanism is responsible for silver release

in some of the samples while the rest retain most of their silver inventories.

Diffusion Couple Leak Testing Review

There are some doubts expressed in the literature and uncertainties as to the exact mechanism or
mechanisms responsible for silver release from coated fuel particles. Classical diffusion does
not explain the current experimental results or the results previously reported in the literature.
Silver doesn’t diffuse through intact SiC, but clearly escaped from the diffusion couples in the

current experiments.

Silver did not diffuse through the spherical diffusion couples but silver release did occur. Leak
testing of the diffusion couples clearly indicates the presence of cracks (mechanical paths) in the
SiC coating of many of the diffusion couples. Although leak rates are not available for all of the
diffusion couples, these mechanical paths would certainly provide a pathway for silver vapor
migration through the diffusion couples during heating. Additionally, where leak rates are
available both before and after heating, they show that some of the samples definitely undergo a

transition from low to high leak rates during heating.
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These leak rates are proof of available mechanical pathways open to vapor transport. Leak
testing was performed with helium gas, a gas with atoms much smaller than silver’s, but the
results clearly identify mechanical, not chemical, paths through the SiC coating that would allow
vapor migration and release. Therefore, the next step in the study of silver migration through
SiC is to consider vapor flow as the mechanism for silver release. Vapor flow modeling,
discussed in the following section, can be used to estimate crack sizes in the current diffusion

couples and also in typical coated fuel particles.

Vapor Flow Modeling

Background

Basic vapor flow modeling and some simplifying assumptions can be used to estimate the crack
size required to accommodate the observed silver loss in the current diffusion couple
experiments and in previous coated fuel particle tests. All cracks were assumed to be straight
tubes with circular cross-sections such that the length of the crack was equal to the SiC coating
thickness. In reality, the crack paths will likely follow tortuous routes and will not have
perfectly circular cross-sections. Using these assumptions, however, allows an initial estimate of
the size of the crack paths with minimal introduction of unknown quantities (e.g., tortuosity

factors) and allows a comparison of the crack sizes between different sets of experiments.

Different regimes govern vapor flow depending on the system pressure and channel size. At
very low pressures, the mean free path of the gas molecules is much larger than dimensions of
the vacuum enclosure. Under these conditions, the gas molecules undergo collisions primarily
with the walls of the enclosure rather than with other molecules; this is known as molecular
flow. At atmospheric pressures, the mean free path of gas molecules is very small relative to the
structure through which they’re flowing. In this case, known as viscous flow, the gas molecules
undergo collisions primarily with other gas molecules rather than with the walls and the gas
viscosity limits the flow. At pressures in between, both viscous and molecular phenomena
contribute to gas flow in the transition flow regime. For the data sets analyzed here, only

molecular flow was encountered.

Since silver did not diffuse out of the diffusion couples, the silver release and leak rate results
were reexamined using vapor flow theory. In addition, the results of a typical coated fuel

particle experiment were reevaluated using vapor flow theory. Results of these calculations,
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shown in the following sections, indicate that silver vapor flow through SiC cracks is a plausible
migration mechanism. During molecular flow, the mean free path of the gas molecules is much
larger than the diameter of the tube in which they’re flowing; the movement of the molecules is
dominated by collisions with the tube walls rather than with other molecules. The conductance

of a gas governed by molecular flow is defined as: (Alcatel Vacuum Tech. 2004)

. 1\ [zRT& -
molecular 6 . L :

where  Choecu=  conductance (liter/sec),

R = gas constant (8.314 J/mol-K),

T = absolute temperature (K),

d = crack diameter (m),

aw = atomic weight of the gas (107.87 g/mol for silver), and

L = length of the crack tube (assumed equal to the thickness) (m).

To convert from conductance to mass loss, a value measured during the current diffusion couple
experiments, the time of the experiment and the molar volume are also needed. The molar

volume is calculated from the ideal gas law and is given by:

RT
vmolar = P (Eq 3'5)
where Vmolar =  molar volume (m3/m01),
R = gas constant (8.314 J/mol-K),
T = absolute temperature (K), and
P = pressure (Pa).

For the molar volume as defined by Equation (3-5), the mass loss over a specified time, ¢, due to

molecular flow is given by:

C ot
Qmolecular = melecula aw (Eq 3'6)
v

molar

where Omolecula= mass loss (g),
Cholecui=  1aminar flow conductance (liter/sec),

t = time (sec),
Vmolaw =  mMmolar volume (m3/m01), and
aw = atomic weight of the gas (g/mol).
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The molecular flow equation attributed to Knudsen applies to pipes of circular cross-section.
For pipes of equal cross-sectional areas, pipes with non-circular cross-sections will experience
lower conduction than those with circular cross-sections (Varian Proceedings 1976). More

details of vapor flow modeling are presented in Appendix C.

Silver Mass Loss from Diffusion Couples

There was no evidence of silver diffusion in the silicon carbide shells or outer coatings in the
spherical diffusion couples. Silver did, however, escape from the diffusion couples. There were
no signs of any interaction between the diffusion couples and the pools of molten silver at the
bottom of the couples during heating. Vapor migration of silver through openings in the SiC

layer, therefore, is the only plausible mechanism resulting in silver release.

The crack diameter necessary to account for the mass of silver released can be calculated from
the equations presented previously and the temperatures, times, and pressures of the diffusion
couple experiments. This procedure was also applied to the helium leak testing results on the
diffusion couples, and also to mass loss data from the JAERI (Japanese Atomic Energy Research

Institute) HRB-22 capsule irradiation and heating test.

The graphite substrate shell is ignored for the calculations on the SiC-1 and SiC-2 diffusion
couples. The graphite layer consists of interconnected porosity, providing a direct path for silver
vapor to reach the inner surface of the SiC coating in the diffusion couples. The pressure inside
the SiC layers is simply the equilibrium vapor pressure of silver at the heat treatment

temperature.

At all heating temperatures, there is plenty of excess silver available; only 2 x 107 g of silver is
required to maintain vapor/liquid equilibrium inside the diffusion couples and approximately
0.12 g to 0.50 g of silver was loaded into each diffusion couple. One SiC-1 sample and one SiC-
2 sample experienced fractional releases greater than 100% and did not maintain silver
equilibrium throughout the heat treatment. All calculations assumed a single, straight crack with
circular cross-section and a length equal to the thickness of the SiC layer. The SiC thickness was
calculated from the measured weight gain of the diffusion couples after CVD deposition of the

SiC layer.
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The same assumptions were used for calculations on the SiC-3 diffusion couples with SiC
substrate shells with an outer CVD SiC coating. The SiC substrate shell, however, was not
porous like the graphite shell in the SiC-1 and SiC-2 diffusion couples and it was less likely that
a crack would develop through the entire 800 um thickness of the SiC substrate shell. The only

release path, therefore, for the silver vapor was through the outer SiC coating.

There was a significant gap between the two SiC substrate shells, as previously shown. In this
area, around the entire diffusion couple, silver vapor had direct access to the outer SiC coating.
Any cracks or connected mechanical paths in the SiC outer coating near the seam would result in
silver release. In the SiC-3 couples, only silver vapor near the seam in the inner shell could
easily get to the outer SiC coating. Only cracks in the outer SiC coating near the seam area
produced silver release, resulting in lower overall mass loss compared to the SiC-1 and SiC-2

diffusion couples.

The seam in the SiC-1 and SiC-2 diffusion couples between the graphite substrate shells did not
significantly contribute to the overall silver release because the graphite shells were porous and
allowed unimpeded silver migration to the SiC coating. The graphite substrate shells also
formed a closer fit with each other, presenting only a small gap at the seam. In the SiC-1 and
SiC-2 diffusion couples with SiC coatings over a graphite hollow shell, the silver vapor had
ample access to the SiC coating through the porous graphite shell. At the seam location silver
vapor had direct access to the SiC coating, but since the graphite shell did not significantly
impede silver vapor migration the presence of a gap between the graphite substrate shells did not

change the calculations.

The conductance and mass loss equations require the silver vapor pressure inside the spherical
diffusion couple. At the heating temperatures used for the diffusion couple experiments, the
silver existed as a vapor in equilibrium above its liquid. In all but two cases, there was sufficient
silver inside the diffusion couple to maintain equilibrium between the gas and the liquid during
the entire heat treatment. The equilibrium pressure for silver vapor above its liquid is given by

(Barin, Knacke, and Kubaschewski 1977):

1
Piner = 2.131x10° exp(— 3.054x10* ?j (Eq. 3-7)
where  pgwer =  equilibrium silver vapor pressure (torr), and
T = absolute temperature (K).
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As mentioned in Appendix A, graphitic materials do not act as barriers to silver migration. The
graphite layer in the diffusion couples (types SiC-1 and SiC-2) had 13% porosity and was easily
penetrated by the silver vapor. One heating experiment with a diffusion couple with a spot of
exposed graphite approximately 0.16 cm in diameter, sample Agl5, resulted in significant mass
loss in just 2 h at 1500°C. If the silver loss occurred primarily through the bare graphite
location, then the effective transport coefficient for silver vapor through the graphite shells in the
diffusion couples was roughly 0.5 cm?/ s, resulting in nearly instantaneous transport of silver
across the graphite shell. Therefore, the graphite shell is ignored during the crack size

calculations and only transport through the SiC outer coating is considered.

The crack size calculations include the assumptions that the crack path is a straight tube with a
circular cross-section such that the length of the crack path is equal to the SiC coating thickness.
Additional assumptions include an active and accessible crack path during the entire heat

treatment (i.e., silver is uniformly released during the heat treatment).

The molecular flow model was used to calculate the crack diameters for all of the spherical
diffusion couples, then the Knudsen number of the resulting crack diameter and silver mean free
path was checked. For all of the cases, the Knudsen number was well above the limit for
molecular flow, confirming the use of the molecular flow model. Appendix C includes further

details for calculating the Knudsen number and the flow regime.

Tables 3-6 through 3-8 list the relevant heating parameters and the calculated crack diameters
from the three sets of spherical diffusion couple tests. The calculated crack diameters mostly fall
in the range from 3 um to 20 pum with one sample near 30 pm and two samples near 50 pum.
These crack diameters may seem rather large and easy to detect, but if multiple cracks are
present in the sample, a likely event given the large surface area of the diffusion couples, then
the average crack diameter will be smaller. The crack diameter calculated for 20 identical cracks
is also listed in Tables 3-6 through 3-8. These crack diameters vary from about lum to 4 pum
with one sample near 7 um and two greater than 10 um. Although these dimensions are
detectable under optical microscopy cracks may not be noticed if they are not perfectly aligned
with the cross-section that is being viewed. It is possible, therefore, that cracks of the order of
those listed in Tables 3-6 through 3-8 would not have been detected during investigation with

optical microscopy.
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Table 3-6. SiC-1 heating parameters and calculated crack diameters.

Sample Heating Hefclting _SiC Mass Calculated Ca_lculated Crack
D Temperature | Time | Thickness | Loss Crack Diameter for 20
(°0O) (h) (um) (2) Diameter (um) | Equal Cracks (um)
10 1050 1000 65.1 0.0319 54.8 12.1
24 1050 1000 49.6 0.0300 49.0 11.0
28 1200 1760 55.4 0.0083 12.8 2.7
30 1200 1760 53.7 0.0075 12.2 2.7
56* 1500 200 74.6 0.0060 8.4 1.8
57 1500 500 73.2 0.1913 19.4 4.2
63** 1600 550 61.9 0.3297 15.8 33
*0.0000 g initial silver loading (control sample)
**101% mass loss (of initial silver load)
Table 3-7. SiC-2 heating parameters and calculated crack diameters.
Sample Heating Hegting 'SiC Mass Calculated Ca'lculated Crack
D Temperature | Time | Thickness | Loss Crack Diameter for 20
(°O) (h) (um) (2) Diameter (um) | Equal Cracks (um)
37 1500 80 394 0.0110 11.2 2.5
38 1400 224 41.9 0.0138 12.2 2.7
39 1500 400 39.9 0.1360 15.3 34
40 1500 140 79.4 0.2280 32.3 7.2
53* 1600 550 72.2 0.3009 16.2 3.6
* Significant mass loss (116% of initial silver load) violates the equilibrium assumption
Table 3-8. SiC-3 heating parameters and calculated crack diameters.
Sample Heating Hegting .SiC Mass Calculated Ca.lculated Crack
D* Temperature | Time | Thickness | Loss Crack Diameter for 20
(°O) (h) (um) (g) Diameter (um) | Equal Cracks (um)
S10-1 1500 300 110.2 0.0022 6.0 1.3
S10-2 1500 725 110.2 0.0000 0.0 0.0
S10 1500 1025 110.2 0.0017 3.6 0.7
S11-1 1500 300 116.7 0.0023 6.2 1.3
S11-2 1500 725 116.7 0.0015 4.0 0.9
S11 1500 1025 116.7 0.0037 4.8 1.1
S12-1 1350 500 112.3 0.0007 5.8 1.3
S12-2 1350 1000 112.3 0.0007 4.6 0.9
S12 1350 1500 112.3 0.0016 53 1.1
S13-1 1350 500 109.7 0.0008 6.0 1.3
S13-2 1350 1000 109.7 0.0007 4.6 0.9
S13 1350 1500 109.7 0.0017 53 1.1
S22-1 1500 75 63.0 0.0013 6.6 1.3
S22-2 1500 425 63.0 0.0016 4.0 0.7
S22 1500 500 63.0 0.0028 4.5 0.9

* Each sample was heated twice. For example, S10-1 represents the first heat treatment, S10-2 represents the second, and S10 is
the combined heating and mass loss data for sample S10.
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Helium Leak Testing of Diffusion Couples

Helium leak testing, performed on many of the spherical diffusion couples provides additional
information on the presence of cracks in the silicon carbide coating. Leak testing techniques
measure the presence of mechanical cracks. Since silicon carbide is not permeable to helium,

this type of testing detects mechanical cracks present in the diffusion couples.

A procedure similar to the one described above can be used to calculate the crack diameter from
helium leak testing results on the diffusion couples after heating. Since the leak testing results
are in the form of leak rates for each sample, the leak rate model for transition flow can be used
directly to determine the crack diameter. Again, assumptions of a straight crack with a circular

cross-section and a length equal to the SiC coating thickness were employed.

As shown in Tables 3-9 through 3-12, the crack diameters as calculated from the helium leak
testing data on the spherical diffusion couples are roughly one order of magnitude smaller than

those calculated from the silver mass loss.

Table 3-9. SiC-1 calculated crack diameters from leak testing.

Crack Diameter Crack Diameter
Sample Mass fi Silver from Helium Leak
ID Loss (g) rom Sty .
Mass Loss(um) Testing (um)
10 0.0319 54.8 5.3
15 0.0061 37.1 6.1
24 0.0300 49.0 0.34
28 0.0083 12.8 1.8
30 0.0075 12.2 0.49
56* 0.0060 8.4 1.5
57 0.1913 19.4 2.1
63** 0.3297 15.8 5.3

*0.0000 g initial silver loading (control sample)
**101% mass loss (of initial silver load)

Table 3-10. SiC-2 calculated crack diameters from leak testing.

Sample | Mass Crack Digmeter Crack Diameter
ID Loss (g) from Silver from Helium Leak
Mass Loss(um) Testing (um)

37 0.0110 11.2 1.7

38 0.0138 12.2 23

39 0.1360 15.3 N/A

40 0.2280 32.3 N/A

53* 0.3009 16.2 22

* significant mass loss (116% of initial silver load) violates silver vapor equilibrium assumption

** No leak testing data available for samples Ag39 and Ag40
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Table 3-11. SiC-3 calculated crack diameters from leak testing.

Crack Diameter Crack Diameter
Sample Mass from Silver from Helium Leak
ID Loss (g) .
Mass Loss(um) Testing (um)
S10-1 0.0022 6.0 0.60
S10-2 0.0000 0.0 0.57
S10 0.0017 3.6 0.57
S11-1 0.0023 6.2 0.61
S11-2 0.0015 4.0 0.58
S11 0.0037 4.8 0.58
S12-1 0.0007 5.8 0.54
S12-2 0.0007 4.6 0.49
S12 0.0016 5.2 0.49
S13-1 0.0008 6.0 0.53
S13-2 0.0007 4.6 0.49
S13 0.0017 5.3 0.49
S22-1 0.0013 6.6 0.45
S22-2 0.0016 4.0 0.56
S22 0.0028 4.5 0.56

* Each sample was heated twice. For example, S10-1 represents the first heat
treatment, S10-2 represents the second, and S10 is the combined heating and
mass loss data for sample S10.

In all but two cases, the Knudsen number for helium flow through the calculated crack diameter
at room temperature and 80 psi (the soaking over-pressure) was in the intermediate regime. For
two cases, the Knudsen number was very close to the limit between intermediate and laminar

flow.

Silver Mass Loss from Coated Fuel Particles

JAERI irradiated fuel elements with typical coated fuel particles in the HRB-22 capsule at
ORNL (Oak Ridge National Laboratory). Some of the fuel elements were deconsolidated after
heating and individual particles were removed and heated. The third accident condition test
(ACT-3) was heated at 1700°C for 270 h. The activity of each particle was measured before and
after heating. In addition, deposition cups inserted in the furnace were removed and counted

periodically during heating to monitor fission product release.
The initial mean silver activity per particle was 1.04 uCi before the ACT-3 heating test. The

mean mass of silver per particle before the heating test can be calculated from the initial mean

activity and the decay constant for ''"""Ag. The relative change in activity per particle was
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reported after the test. Therefore, the final activity and the final mass of silver per particle can be

calculated by Equation 3-8.

m A D (Eq. 3-8)
Ag — q. 3-
¢ ﬂ’Ag—llOm NA
where  my, = silver mass (g),
A = silver activity (Bq),
A= '""Ag decay constant (s7),
aw,g= silver atomic weight (110 g/mol), and
N, = Avogadro’s number (6.02x10% atom/mol).

The mass loss for each particle during the heat treatment can then be derived from the change in
activity as shown in Equation 3-9. The fractional mass loss for each of the 25 particles in ACT-3

is shown in Figure 3-44.
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Figure 3-44. Significant variation in fission product fractional release occurs among the 25

heated particles in ACT-3.

The crack diameter in the coated fuel particles was calculated using the same procedure used to

calculate the crack diameters from silver mass loss in the diffusion couples. The silver mass loss
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was calculated from the change in activity, as shown in Equation (3-9), using the equilibrium
silver vapor pressure at the heating temperature and assuming the length of the crack path equal

to the SiC thickness. The calculated crack diameters are about 0.2 pm.

The calculated crack diameters for the JAERI ACT-3 coated fuel particles are extremely small.
Features of this size would not have been visible during normal post-irradiation examination.
Optical microscopy or scanning electron microscopy would likely not have revealed cracks of

this order, especially if the crack was not aligned with the cross-sectional plane being viewed.

Crack Size Conclusions

A simple calculation of crack sizes in the silicon carbide layers of the current diffusion couples
and typical coated fuel particles using the observed mass loss show that vapor transport through
cracks can account for silver release. This explanation allows for some diffusion couples or
some fuel particles to lose significant fractions of their silver inventory through cracks while
other samples remain intact and retain their inventory. Due to the relatively small size of the
estimated cracks, they would be difficult to detect by standard optical microscopy of polished

cross-sections.

Other Fission Product Behavior

The previous sections have shown that vapor migration through small cracks in the SiC coating
provides a viable mechanism for silver release from both the current diffusion couple
experiments and previous typical coated fuel particle tests. The SiC coating, however, also acts
as a barrier for other fission products and cracks existing through the SiC coating might also be
expected to release some of the other fission products as well. The summary of fission product
interactions in the layers of coated fuel particles and the surrounding fuel element materials
provides evidence that cracks in the SiC resulting in silver release would not necessarily increase
the release of other fission products. Silver vapor migration through SiC cracks is, therefore, a

viable explanation for silver release.

Catastrophic failure of the TRISO coatings or through-coating cracks that extend through the
[PyC-SiC-OPyC system will certainly result in significant fission product release of both gases
and metallic fission products. Minor flaws in a single layer, however, may allow preferential

release of only certain fission products. Retention of fission products in layers other than the
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SiC layer may prevent release even if cracks are present in the SiC. The role of all of the layers
in the coated fuel particle needs to be examined to understand the effect cracks in the SiC layer

would have on the overall fission product release.

The key fission products of interest for release and the ones most frequently measured during
testing include the fission gases krypton and xenon and the solid fission product cesium. These

fission products are discussed below.

Fission Gases

Intact pyrocarbon layers are effectively impermeable to fission gases during normal operating
conditions McCardell 1992). The SiC layers also provide holdup of the fission gases, but as long
as at least one of the PyC layers remains intact, the particle will retain the fission gases.
Therefore, small cracks in the SiC layer that permit the escape of silver will not result in an

increased krypton or xenon release as long as the PyC layers remain intact.

Cesium
Many of the layers in a typical coated fuel particle retain cesium better than silver. Therefore,
even if cracks are present in the SiC layer, allowing silver release, cesium release may be

decreased or delayed due to increased retention in the particle relative to silver.

In general, cesium has been reported to diffuse more slowly than silver out of UO, fuel kernels
(Martin 1993; IAEA 1997). This increased retention of cesium in the fuel kernel will decrease
the amount of fractional release of cesium relative to silver and will also delay the time to
breakthrough of cesium relative to silver. Also aiding retention of cesium is the formation of

stable compounds in the kernel such as CsMoO (McFarlane 2002).

Although the pyrocarbon layers do not do a great job of retaining the solid fission products
compared to the SiC layer, they do provide more retention for cesium than for silver (Martin
1993; IAEA 1997) Additionally, cesium experiences some sorption in the matrix graphite in fuel
elements (McCardell et al. 1992;Schenk, Pitzer, and Nabielek 198). Therefore, cesium released
from fuel particles into the matrix will be, at least partially, adsorbed onto the graphite. Silver is
not retained by any of the PyC layers or the matrix graphite. Where reported, the diffusion
coefficients for silver in PyC and matrix graphite are all lower for cesium than for silver,

indicating greater cesium retention in those materials.
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Greater retention of cesium by PyC layers also means that if cesium does migrate through the
SiC layer, even if through cracks as proposed for silver release, additional holdup by the OPyC
layer will decrease the amount of cesium released from the fuel particle and will also delay the

breakthrough time for cesium relative to that for silver (McCardell et al. 1992).

Concentration profiles measured through fuel particles typically show cesium mainly in the
kernel and buffer with steep concentration gradients through the IPyC layer indicating retention
in that layer (McCardell et al. 1992). A crack in the SiC will result in silver release, but retention

in the PyC layers and matrix graphite will lessen the amount of cesium that escapes.

Crack Formation Possibilities

Although cracks in the SiC coating provide a good explanation for the wide variations in silver
release, cracks have not yet been positively identified or observed and remain a hypothesis at this
time. However, the formation of microscopic-scale cracks in the SiC coating may not be
surprising given the residual stresses remaining in SiC after fabrication and the individual grain
behavior during thermal cycling. For the current diffusion couples, an additional stress factor not
present in typical coated fuel particles is the seam. The seam is an asymmetrical feature and may
promote crack growth around the circumference of the diffusion couples. Additionally, the
differential thermal expansion between the graphite substrate shell and the SiC coatings can lead
to cracking. Finite element calculations of a typical diffusion couple, neglecting the discontinuity
of the seam, indicate that the stress in the diffusion couple could exceed the fracture strength of

the SiC due to differential thermal expansion after fabrication, as shown in Figure 3-41.

With the variation in the fission product release data, diffusion does not explain the range of
silver release. Further, it is unlikely that one mechanism can describe all observed results.
Within a single batch, some particles appear to undergo catastrophic failure, releasing most of
their fission product inventories in a short time, while others lose only small fractions, if any at
all, over long heat treatments. Crack sizes based on observed silver mass loss from both the
current diffusion couples and typical coated fuel particles and from leak testing results on the
diffusion couples offer a reasonable and plausible explanation of silver release. Furthermore,
this proposed mechanism is also consistent with other fission product behavior in coated fuel

particles.
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Conclusions

Although silver release from various coated fuel particle designs has been observed for decades,
its exact transport path has yet to be identified. One of the goals of the work described in this
task was to observe silver diffusion, the assumed mechanism governing silver transport through

and release from silicon carbide by measuring characteristic concentration profiles.

Many authors have reported diffusion coefficients to explain silver release observations. These
values represent average batch behavior, but do not address the variability within batch
populations. Identifying the exact path and cause of silver transport in silicon carbide is
hampered by the small feature size of the potential cracks or flaws and the relatively small

number of flawed particles.

Key Findings

As stated earlier, the goals of this work were to observe silver diffusion in silicon carbide and to
measure the resulting silver concentration profiles. Two different types of experiments with
different silver concentration ranges showed no evidence of silver diffusion through silicon
carbide. The results of the experiments described in this work indicate that silver release from

silicon carbide is dominated by vapor migration through physical cracks.

(1) A reassessment of the literature, detailed in Appendix A, highlights variations in silver
release and reported diffusion coefficients in excess of that expected for a grain boundary
diffusion mechanism. Although variations in silver release would be expected from a grain
boundary diffusive process, diffusion does not account for the variations observed in
individual particles and even between batches. The range of diffusion coefficients reported
in the literature spans almost 2 orders of magnitude. If the size of that range were the result
of differences in exact path length between particles, due to SiC thickness and
microstructure, the total path length would have to change by a factor of roughly 13 for an
effective path length of 470 um through a 35 pum thick coating. Silver traveling along SiC
grain boundaries, as suggested in the literature, would follow a meandering path through a
35 um thick SiC layer, but total path lengths on the order of 400-500 um are not plausible.
The population of silver release results reported in the literature is not consistent with solid-

state diffusion, either grain boundary or trans-granular.
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2)

3)

4)

)

Silver did not diffuse in silicon carbide in ion-implanted samples, even along the abundant
grain boundary area in the recrystallized and original SiC. If ion-implanted silver were
controlled by a diffusion mechanism, the silver concentration profile would have been
completely depleted during heating. No change in the silver concentration profile, however,
was observed. Based on the measured silver concentration profiles, the diffusion coefficient
for silver in SiC must be less than 5x10' m?/ s at 1500°C. The microscopic distribution of
silver changed from a fairly homogeneous mixture in amorphous silicon carbide after
implantation to discrete precipitates between recrystallized SiC grains after heating. Pockets
of unit-activity silver provided ideal sources for diffusion along grain boundaries, but no

silver diffusion was observed.

Diffusion did not govern silver release from the spherical diffusion couples. The diffusion
couple experiments resulted in a range of silver release from 0% to 100%. Although the
silicon carbide coating thickness varied significantly in the diffusion couples (from
approximately 40 um to greater than 100 um), the release results are not explained by a
diffusive mechanism. Furthermore, the diffusion coefficients necessary to account for the
silver mass loss from the silver vapor source at the top of the diffusion couples would have
had to be about 6 orders of magnitude greater than those reported in the literature. Although
the diffusion couple experiments did indeed produce silver mass loss, silver migration was

not controlled by diffusion on the scale of that reported in the literature.

Increased helium leak rates after heating prove the presence of cracks in the SiC coating on
the diffusion couples. Cracks in the silicon carbide coating could have provided a pathway
for silver vapor escape. Crack sizes in the diffusion couples calculated from simplified
vapor flow models are on the order of 1-10 um. Features of this dimension would not likely
have been observed during analysis due to their small size and random orientation within the

sample.

Vapor migration through cracks is proposed to dominate silver release from silicon carbide.
Only silver vapor had access to the SiC coating, via migration through the graphite porosity,
during heating. Molten silver, at the bottom of the diffusion couples, did not penetrate the
graphite shell and, therefore, could not have resulted in silver release. A vapor migration
mechanism is consistent with the results and observations of the current experimental

program and is also consistent with results and observations reported in the literature. Vapor
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migration through mechanical cracks explains why some particles, those with cracks, release
large fractions of their silver inventories while other particles, those without cracks, retain all
of their silver. Diffusion cannot account for this broad variation in fractional release results.
Given the properties of the other coated fuel particle layers, vapor migration is also
consistent with other observed fission product behavior. The presence of small cracks in the
SiC layer will not result in large releases for other fission products, for example cesium and
krypton, due to their retention in the other layers. The PyC layers retain krypton, xenon, and
the noble fission gases; as long as either the IPyC or the OPyC is intact, the noble fission
gases will be retained in the particle, even if the SiC layer is damaged. Although the SiC
improves cesium retention (relative to the PyC layers), the graphite materials, both within
and surrounding the fuel particles, aid in retention. Therefore, cesium release through SiC

cracks will be lower than silver release.
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3.2 Task Technical Overview- INEEL

Introduction

The purpose of this section is to document INEEL’s work to date on fission product modeling in
TRISO coated particle fuel. An understanding of fission product transport in the coated particle
is a key component of the ultimate source term for the very high temperature gas cooled reactor.
In addition, modeling fission product transport in the fuel element matrix and reactor graphite

will eventually be needed.

The classical gas reactor coated-particle fuel is a spherical layered composite of microscopic
dimensions. It has a fissile fuel kernel, generally made of UO, or UC,, or UCO, that is
surrounded by a porous graphite buffer layer that absorbs radiation damage, allows space for
fission gases produced during irradiation, and resists kernel migration at high temperature.
Surrounding the buffer layer is a layer of dense pyrolytic carbon, a SiC layer, and a dense outer
pyrolytic carbon layers. The pyrolytic carbon layers act to protect the SiC layer, which is the
primary pressure boundary for the micro-sphere. The inner pyrolytic carbon layer also protects
the kernel from corrosive gases that are present during the deposition of the SiC layer. This
layer arrangement is known as the TRISO coating system. Each micro-sphere acts as a mini

pressure vessel, a feature that is intended to impart robustness to the gas reactor fuel system.

The TRISO-coated particle fuel is a complicated fuel form from the perspective of fission
product modeling. The multiple layers, the chemical state of the fission products, the different
transport mechanisms responsible for gaseous and metallic fission product transport in each
layer, and the projected high burnups and fast neutron fluences make the modeling of fission
product transport challenging. The following sections will discuss fission product transport in
the TRISO-coated particle fuel layer by layer. Each section includes a review of the existing
database for transport in the layer, discusses potential mechanisms responsible for the transport,
and presents results of preliminary scoping calculations for the transport in the layer. A
simplified integrated transport model is presented and some simple sensitivity results are
discussed. Preliminary benchmarking of a more sophisticated fission product transport model is

also discussed. This is followed by a summary of the findings.
The Kernel

Fission product transport in the kernel is complicated. Important mechanisms include recoil,

diffusion of fission products to grain boundaries, vaporization and transport through the
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interconnected porosity of the kernel to the surface of the kernel and chemical reaction at the
boundary of the fissile kernel. These processes are functions of burnup and temperature and thus

change over the life of the fuel.

Recoil

Recoil from the kernel can be estimated using the following equation:
(RF)recoil = 0.25 [1~(1y-d) 'Yy

where 1y is the radius of the fuel kernel and d is the average fission fragment range. The average
fission fragment ranges are calculated for a given fuel composition from compiled experimental
data [1]. Based on fission energies of 107 MeV for krypton and 72 MeV for xenon, the average
krypton range is 5.8 microns and the average xenon range is 4.1 microns in UO, with a density
of 10.5 g/cm’. Thus, for a 500 micron kernel, the recoil release fraction is ~ 1.5%. For a 350

micron kernel, the recoil release fraction is ~2%.

Short-lived Fission Gas Release Rate to Birth Rate (R/B) Ratio
A model has been developed to account for the release rate to birth rate (R/B) of short-lived
gaseous fission products from failed particles and from uranium contamination in the fuel

element matrix (compact or sphere). This is expressed for gas specie i as:
(R/B)l = ffail (R/B)fail,i + fU—contamination (R/B)U—contamination,i

where

fr.n = particle failure fraction

(R/B)gii = release rate to birth rate ratio per particle failure for gas specie i

f U-contamination = Uranium contamination fraction

(R/B)y-contamination,i = Trelease to birth rate for gas specie i due to U contamination.

The (R/B) correlations are based upon the widely used Booth equivalent sphere gas release

model. These correlations may be generally expressed as[2]:

(R/B) = (3/%) [ coth(x) — (1/x) ]

U. Littmark and J. F. Ziegler, “Handbook of Range Distributions for Energetic lons in All
Elements,” Pergamon Press, 1980.

D.R. Olander, “Fundamental Aspects of Nuclear Recator Fuel Elements”, ERDA, TID-26711-
P1, 1976.

177



where

x =[(a’)/D]"

L = decay constant = In2/T ,, (s7)

T, = isotope half life (s)

D/a’> = D’ = reduced diffusion coefficient (s)
a = radius of equivalent sphere (m)

coth(x) = [ exp(x) + exp(-x) ]/ [ exp(x) — exp(-x) ].

The equivalent sphere radius, a, is equal to the kernel radius when considering (R/B) for failed
particles and is proportional to the raw graphite grain size of the matrix when considering (R/B)

from uranium contamination.

Several correlations for reduced diffusion coefficients to be used in (R/B) calculations exist in
the literature (IAEA 1997). A few of the more prominent correlations were selected for
evaluation before incorporation into the PARFUME code. These included:The U.S. Model
(Martin 1993) which contains a unique reduced diffusion coefficient correlation and also differs
from the classic Booth Equivalent Sphere formalism presented above in that it contains a
diffusion parameter, multiplicative temperature and burnup functions and empirical factor. The
British Model (IAEA 1997) that incorporates intrinsic diffusion, vacancy diffusion and athermal
diffusion (a function of fission rate density) terms in its reduced diffusion coefficient. The
German | and II Models (Nabielek 1991, 2002) that incorporate two separate sets of reduced

diffusion coefficients dependent upon temperature only.

A comparison of the four models for Kr-85m (R/B) per failed particle is presented in Figure 3-
45. Input parameters for this comparative calculation are representative of fuel irradiated in the
NPR-1A experiment. On-line gas release measurements from the experiment indicated that Kr-
85m (R/B) per failed particle was 0.028 at a time-average volume-average temperature of 977 °C
(Maki et al. 2002). This experimental value compares almost exactly with the calculated

German II value of 0.029.
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Figure 3-45. Comparison of (R/B) model results.

Considering its adherence to first principals, lack of ad hoc data fitting “fixes”, and agreement to
experimental data, the German II reduced diffusion coefficient correlation was chosen for use in
the PARFUME code. Thus, the following reduced diffusion coefficients are currently used in
PARFUME:

When considering (IUB)U-contamination,l (ROlhg 2001)

D’
D’
where
T = temperature in degrees K.

3.0x 107 exp[ -1.06 x 10° / (8.314) T] (s™") for krypton isotopes
1.7x 107 exp[ -7.86 x 10*/ (8.314) T] (s™") for xenon isotopes

When considering (R/B)g; for krypton and xenon isotopes (Nabielek 1991, 2002),

D’ = (500/d)* 100771920/ D1 for T< 1173 K
D’ = (500/d)* 100*60-®20/D1 for T> 1173 K

where

d = kernel diameter in um.

Decay constants, with the corresponding half lives, for the isotopes considered in PARFUME are

presented in Table 3-12.
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Table 3-12. Decay constants used in PARFUME.

Isotope Half Life Decay Constant (s™)
Kr-85m 4.48 h 4298 x 107
Kr-87 76 m 1.520x 10™
Kr-88 2.84h 6.780 x 10”
Kr-89 3.16 m 3.656 x 10”
Kr-90 32.3s 2.146 x 107
Xe-131m 11.92d 6.730 x 10”7
Xe-133 5.25d 1.528 x 10°
Xe-135m 153 m 7.551 x 107
Xe-135 9.10 h 2.116x 107
Xe-137 3.84 m 3.008 x 107
Xe-138 14.1 m 8.193x 10™
Xe-139 40 s 1.733 x 107

Booth Equivalent Sphere Diffusion

The conventional release process of long-lived fission product diffusion through grains to the
grain boundaries and subsequent transport through the interconnected porosity is a mechanism
that has been studied extensively in the context of light water reactor fuel behavior. The Booth
equivalent sphere diffusion model has been used to estimate the release of fission gases via these
mechanisms and has been used in the gas reactor community to describe fission product release

from the kernel. The release fraction is given by (Booth 1957):

6 < :
FR=1 _(D'—t)Z[l —exp(-n’7’Dt]/[n* 7]
n=1
where D’ is the reduced diffusivity which is equal to D/a>. The two key parameters in the model
1s a, the effective radius for diffusion, and D the diffusion coefficient. The formulation for
diffusion coefficients by Turnbull, which accounts for intrinsic, athermal and radiation-enhanced
diffusion, is believed to be the most accurate for UO, (Turnbull 1982). The definition of the

effective radius is usually taken to be the grain size of the UO..

There are several limitations with the Booth model:

e The original Booth model was used to describe gas release from a fuel grain and not a
fuel kernel or fuel pellet per se where the gas phase transport in the interconnected
porosity is also important.

e The use of the Booth model makes it difficult to capture the effect of burnup on the
microstructural changes in the kernel and the subsequent impact on release.
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o The release of some of the metallic fission products, which tend to form nodules along
grain boundaries in the fuel (e.g., Ru, Mo, Tc, Pd), is not governed by this classic
diffusion mechanism.

Despite these shortcomings, many researchers have correlated or “force-fitted” release
measurements to an effective Booth model. For coated particle fuels, effective diffusivities exist
for the fission gases and some fission metals like cesium, silver and strontium. The effects of
changes in the microstructure with burnup are not directly accounted for but are implicit in the
values used for D and a. Figure 3-46 is a plot of the values of D measured on UO, coated
particles by the Germans (assuming a = 250 pm) (IAEA 1997) and form the baseline to be used
for scoping analysis presented here. No diffusivity data exist for the more noble fission metals
like Ru, Mo, Tc, and Pd. Similar data do not exist for UCO and thus UO, values are used in the
interim. Plans exist to measure these parameters in UCO fuel in the DOE Advanced Gas

Reactor Fuel Development and Qualification Program (Oak Ridge National Laboratory 2003).
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Figure 3-46. Comparison of diffusivities of fission gases and some fission metals in UO,
kernels of coated particle fuel (IAEA, 1997).
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Scoping Calculations

This simple effective Booth model has been used with the measured diffusivities for UO, fuel to
determine the impact of time and temperature on the release of fission gas, cesium, silver and
strontium from a 500-um UQO, kernel. Three specific calculations have been performed:

o A three-year 900°C irradiation, typical of the average exposure of a UO, coated particle
in a prismatic reactor

e A three-year 1200°C irradiation, typical of the peak exposure of a UO; coated particle in
a prismatic reactor

e A ten-cycle three-year 600 to 1200°C cyclic exposure typical of peak exposure of a UO,
coated particle in a pebble bed reactor.

The resultant fission product releases are shown in Figures 3-47, 3-48, and 3-49. The results

indicate that the release is dominated by the time at high temperature.

Fission Product Release from 500 micron UO2
kernel at 1200 C
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Figure 3-47. Fission product release from 500 um UQO, kernel at 900°C.
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Fission Product Release from 500 micron UO2
kernel at 900 C
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Figure 3-48. Fission product release from 500 um UO, kernel at 1200°C.

Fission Product Release from UO; Kernels in
Recirculating Pebble Bed Core (600 to 1200°C ten
times over life)
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Figure 3-49. Influence of cyclic temperature in a pebble bed reactor on fission product release
from a 500 pm UO; kernel.
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The Buffer

The buffer plays an interesting role in the coated particle from the perspective of fission product
transport. Depending on the specific irradiation conditions, the nature of the shrinkage and
densification of the buffer establishes the initial condition for fission product transport during
irradiation and under accident conditions. The buffer is a porous carbon layer (~50% dense
initially) whose function is to serve as a void volume for fission gases and act a material to
absorb fission recoils and swelling of the fuel kernel. Sometimes the buffer can crack because of
tangential stresses developed under irradiation. Because of the high porosity of the layer, it has
the lowest conductivity of any layer in the coated particle and thus the largest temperature drop.
Depending on the power produced in the kernel, the temperature gradient in the buffer can be

quite large, which may cause thermal (or Soret) diffusion in the layer.

Behavior of the buffer
For a first approximation we assume that the outer boundary temperature of the fuel particle is
uniform and calculate the internal temperature distribution using a simple one-dimensional heat
conduction model. In a spherical fuel kernel with uniform heat generation rate, q¢”” (W/m’), the
steady state temperature rise is given by

T,—T;= —qf” 1,°/6ks,
where T, = T(0), T, = T(r;), 1, = fuel kernel radius, and k¢ = fuel kernel thermal conductivity.

Ignoring heat generated in the buffer, the buffer temperature drop is given by:

Ti — Ty = q¢ (rp-11)/47kr 12

where r, = buffer outer radius, k. = thermal conductivity of the buffer, and q; = (4/3) nr’qs” =
thermal power generated in the fuel kernel. Assuming no gaps develop between layers which can
cause large temperature drops, similar equations apply to the temperature drops across other

layers (IPyC, SiC, OPyC).

Table 3-13 presents the calculated temperature drop across each layer, and the layer’s associated
thermal properties for an average particle that generates ~ 62 mW of power, which is the average
power per particle in a pebble bed modular reactor core (PBMR). Thus, for an average particle,
the ~ 10 K temperature drop across the buffer translates into ~ 1000 K/cm gradient across the

layer.
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Figure 3-50 plots the thermal gradient and the temperature drop that can develop across the

buffer as a function of the power per particle for a 500 micron UO, German coated particle. As

the power increases, significant thermal gradients can develop. These thermal gradients lead to

increasing thermal stresses in the layer.

The resulting stresses in the buffer due to thermal

gradients and densification, if high enough, could cause cracking of the buffer. Furthermore,

high thermal gradients across the buffer (> ~ 1000 K/mm) can drive thermal diffusion (Soret

effect) of fission products across the layer.

Table 3-13. Temperature drops across layers of a coated particle.

Outer radius, pm | k, W/m-K p,kgm’® | C, J/kg-K | AT, K layer

Uo, r =250 2.52 10960 332 3.92

Buffer (50% r; =345 0.5 1100 1.5 10.88

dense graphite)

1PyC r; = 385 4.0 1700 1.5 0.372

SiC r, =420 13.9 3200 0.50 0.077

OPyC s = 460 4.0 1700 1.5 0.261
Total AT = 15.5

Calculated Effect of Particle Power on Gradient across
the Buffer Layer-standard German Particle
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Figure 3-50. Effect of particle power on gradient across the buffer layer of a standard 500-pum
UO, German particle.
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Figure 3-51 is a photomontage of different fuel particles that have been irradiated under different
power conditions. As shown in the figure, as the irradiation is accelerated the power being
produced in the particle is increased and the state of the buffer changes. The German LEU UO,
particle from AVR shows very little change in the buffer after irradiation probably because of
the low power being produced (the exact power history is not well know given the nature of
pebble bed refueling). The LEU UCO particle irradiated in the HRB-14 irradiation shows a
typical cracked buffer. These cracks can act as fast paths for fission product transport. The
particle in HRB-15A is an example of severe cracking of the buffer. The NPR-2 HEU UCO
particle was accelerated a factor of 10 from that expected in a gas reactor. There is significant

densification of the buffer on one side of the particle as the buffer shrank during the irradiation.

Severe cracking
of buffer

Significant

shrinkage of buffer
7 j

G::tr::?: HRB-14 HRB-15A  NPR-2 HEU
P . LEU UCO LEU UCO Uco
AVR pebble P P P
Real time > 10 x accelerated
irradiation irradiation

Figure 3-51. Different states of the buffer in coated particles following irradiation.

Table 3-14 schematically presents this evolution of the buffer as it scales with particle power.
The table describes possible locations where such powers might be found in a pebble bed
reactor, in a prismatic gas reactor core or in an irradiation. In addition, the thermal gradient that
develops across the buffer of a 500-um UO, kernel has been estimated and some comments

about the condition of the buffer are provided. (Note that the thermal gradients for a 350-pm
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kernel in a prismatic core would be about double that shown here for the same power level

because of the smaller kernel size).

Table 3-14. Particle power considerations on the condition of the buffer in coated particle fuel.

Descrint PBMR low flux PBMR pebble Current Very
Io?::(t:igﬁ on or region; PBMR average and prismatic prismatic accelerated
S\L,!\;IQHS compact peak irradiation limit irradiations
500
Particle Power 251040 60 mwW 100 mW 400 mW to
mwW 5000 mW
Thermal gradient _ _ - ~ 900 to
Across buffer <50 K/mm 100 K/mm 250 K/mm 750 K/mm 9000 K/mm
(for 500 micron)
High Excessive
Condition of Uniform Moderate tensile shrinkage;
buffer shrinkage tensile stress stress - buffer and
- some many fuel side by
cracking cracks side

Finite element studies have also been performed to evaluate the effects of a thermal gradient
across the buffer, irradiation induced shrinkage and restraints on deformation of the buffer. The
condition of the buffer is an important initial condition for fission product transport modeling. It
was determined that a thermal gradient alone does not impose significant thermal stresses in the
buffer. Calculations showed that any significant stresses in the buffer were caused by irradiation-
induced shrinkage of the buffer while the buffer is bonded to the IPyC layer. These stresses are
easily large enough to cause cracking of the buffer. Cracks would likely develop first at the

inner surface of the buffer, since this is the location of maximum tensile stresses.

Deformation of the buffer is controlled primarily by the irradiation-induced shrinkage of the
layer, and boundary conditions acting on the layer. As shown in Figure 3-9, the buffer shrinks
away from the IPyC during irradiation when the buffer is free from any restraint. In this

calculation, a temperature gradient of 500 °C was imposed across the thickness of the buffer (An
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extreme case to determine any sensitivity). The presence of radial cracks at various locations
along the inner surface (extending halfway through the thickness of the buffer) had essentially no
effect on this deformation. However, when a restraint (in direction /) was imposed at the
midsection of the buffer, the buffer kinked inward at the restraint location (Figure 3-52).
Removing the 500 °C gradient across the buffer had little effect on this deformation (Figure 3-
53), showing that the deformation of the buffer was controlled more by irradiation-induced
shrinkage than the thermal gradient. The results suggest that lateral restraint imposed by the
presence of the kernel and irradiation induced shrinkage of the buffer has the greatest effect on

deformation of the buffer under irradiation.

Figure 3-52. Deformation of buffer when radial cracks are present on its inner surface.

Figure 3-53. Deformation of buffer when lateral restraint is applied.
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Transport in a porous medium

Given the large interconnected porosity in the buffer, we have examined the transport of gases in
a porous medium to describe the behavior of fission gases and vapors in the layer. Pressure
driven diffusion has been well studied in porous mediums and References (Kast and
Hohenthanner 2000) and (Mason and Malinaukas 1983) provide a comprehensive overview of
the subject. In all cases, the molar flux of material through the porous medium is a function of
the pressure gradient across the material. Three different regimes are traditionally considered
depending on the mean free path of the gas relative to the characteristic size in the medium, or
the Knudsen number (Kn = A/dp., where A is the mean free path). Characteristic sizes could
range from nanopores in a material like an as fabricated buffer to microcracks as might be

typical of a cracked buffer.

For Kn >1, the mass transport behavior is described using free molecular flow and the molar flux

is given by:
N D &
NKn =——fn__p_ Vp
RT /Llp,Kn
DKn :(4/3) apore VRT/Zﬂ'M
where:

Dk, = the Knuden diffusivity,

dpore = the average pore size in the medium,
gp = the porosity of the medium

Upkn = the tortuosity

M = the molecular weight of the gas

R= gas constant

T = absolute temperature.
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In the transition region, 0.01 < Kn < 1, both viscous flow and diffusive flow must be considered.

They are summed to determine the overall molar flux. Hence:

N :Nvis+ Ndlff

N _ D &y
dif =
RT ﬂp,Kn
1
oo 1]
Eff = +
Dy gus |

12, gas

Vp

‘DKn

DKn = (4/3) C_iporeVRT/zﬂ'M
D, .. = Chapman — Eskong — Theory

](7 vise = —% Vp
Note that the diffusive flux has the same form as in the free molecular flow regime but the
diffusivity is an effective diffusivity that considers the effects of Knudsen flow and traditional
gas phase mass transport as given by Chapman Eskong Theory (Bird, Stewart, and Lightfoot
1960) in series. The viscous diffusion term depends on the pressure gradient as well as the

viscosity of the gas, 1, the average pressure of the system, 1_9, and the apparent permeability of

the material, k.

In the continuum region, where Kn < 0.01, the contribution from viscous flow and diffusive flow
are summed to determine the overall molar flux. However in this case, molecular flow effects
are very small and the diffusive term takes on traditional form with the diffusivity equal to the

traditional gas phase mass transport value as given by Chapman-Eskong Theory. Thus:

](/' :];/vis+ thff

These equations have been used to estimate effective diffusivities as a function of pore or crack
size. We have selected Kr gas at 1000 and 1600°C to be representative of normal operation and

accidents. We have also considered the effect of pressure ranging from 0.5 MPa to 25 MPa,
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values that are representative of the range of the internal pressure in a particle over its life.
Figure 3-54 plots the effective diffusivities at 1000 and 1600°C respectively. The results suggest
that gas pressure is only important for characteristic sizes greater than ~ 0.02 um. Furthermore,
comparison of the two figures suggests that the influence of temperature is moderate at best.
The most important effect is that of the characteristic size of the transport path in the medium.
For nanopores, effective diffusitivies are on the order of 3 to 5 x 107 m*/s. By contrast, transport
through micropores or micron sized cracks is much faster, with effective diffusivities ranging
between 10™ and 107 m*/s depending on the pressure of the gas involved. Although the actual
pore size in the buffer is not well known, these results suggest that rapid transport of fission
gases and fission product vapors could be expected through the buffer layer in a coated particle.
However, to use the model completely to calculate the molar flux, the porosity and tortuosity of
the buffer need to be known or estimated. By way of comparison, the Germans assumed the
diffusivity of all species in the buffer was 10® m?/s and the U.S. used a value of 107" m%/s in

their evaluations.

1.00E-02 | —-—--Kr, 1000°C, 0.5 MPa 1.00E-02 | ks 1600°C, 0.5 MPa
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Figure 3-54. Effective diffusivities for Knudsen and viscous diffusion.

Thermal Diffusion
The large thermal gradients in the buffer can lead to thermal diffusion, which must be added to
the traditional concentration driven Fickian diffusion across the layer. The diffusive flux can

then be written as:

cCoO
J=-D(VC+—=2.V
( 272 T)
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This second term on the right hand side of the equation is the thermal diffusion component, or
Soret effect. Most of the literature dealing with thermal diffusion (the Soret effect) relates to
gases or liquids. There are a few references dealing with solids. The heats of transport, Q*, for
the buffer and condensable fission product material combinations are unknown but values of Q*
range from about —210 kJ/mol to + 50 kJ/mol for various material combinations in the literature
(Korte, Janek, and Tmm 1997; Hofman, Hayes, and Petri 1996; Kleykamp and Heiko 2001).
This corresponds to values of Q*/R from —25,000 K to + 6,000 K. We have considered a value
of + 20,000 K, to determine an upper bound on fission product transport through the buffer layer

in the presence of a temperature gradient.

To scope out the influence of irradiation and thermal gradient diffusion on the potential release
of fission products, we have modeled the kernel and each layer of the coated fuel particle using a
one-dimensional diffusional transport code called TMAP4 (Longhurst et al. 1998). We have
used cesium as the fission product but clearly we could have used any other fission product of
interest. Given the power per particle and the irradiation temperature, the model calculates the
temperature of each material constituent in the coated particle. Based on the power level and
time (burnup), the fission product generation is input to the code. Using the diffusivity of
cesium in the kernel and each of the layers in the TRISO coating from the German experience
(IAEA 1997), a diffusivity of 107 m?/s in the buffer layer and a value of Q*/R of 20000 K, we
then calculate the transport of fission products from the kernel and into the coatings under a user
specified irradiation history and a subsequent 500 hour heating at 1600°C to simulate a
traditional German heating test. Figure 3-55 summarizes the result of these calculations. Plotted
is the fraction of cesium in the OPyC layer at the end of the irradiation and the fraction of cesium
released from the particle at both the end of irradiation and the end of the 500-hour high
temperature heating for different particle powers. Two different irradiation conditions are
considered: a three year constant irradiation at 1225°C and a 10-cycle 3-year pebble bed
irradiation where the fuel experiences a change in temperature from 600 to 1200°C ten times

over its three year life, as illustrated in Figure 3-55.
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Effect of Thermal Diffusion and Irradiation on Distribution and
Transport of Fission Products

Cs as an example, German particle, Q*/R=20000
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Figure 3-55. Effect of thermal diffusion and irradiation on the distribution and transport of
fission products in the coated particle.

The results indicate that the cyclic irradiation has a strong influence on the distribution and
transport of fission product cesium. The model predicts an order of magnitude more cesium
reaching the OPyC layer in the case of the 3-year constant irradiation at 1225°C than in the case
of cyclic irradiation, and three to fours orders of magnitude more cesium released from the
particle at the end of irradiation in the case of constant irradiation at 1225°C than in the case of
cyclic irradiation. After the 500-hour high temperature heating, the cesium release from the
particle is an order of magnitude greater in the case of constant irradiation at 1225°C than in the
case of cyclic irradiation. Given the diffusional transport and the strong effect of temperature on

diffusivities this is hardly surprising.

The results also indicate that thermal diffusion (Soret effect) can have a moderate influence on
the transport and distribution of fission products. A factor of ten increase in power per particle
(from 60 mW to 600 mW) increases the concentration of cesium in the OPyC and the fraction of

cesium released after irradiation and after high temperature heating by factors of 5 to 10.
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These results illustrate the important role that irradiation history has on the distribution of fission
products in the coated particle and the potential release under normal operation and accident
conditions. The irradiation effects have a large impact on the fission product behavior in the
accident because the initial conditions are different. However, given the low power/thermal
gradients in German pebbles and the low level of acceleration in most German irradiations (Petti
et al. 2003), thermal diffusion is not considered to be very important in modeling of fission
product release, even with the potentially high value of Q*/R that was used in these calculations.
Only in cases where the irradiations are very accelerated as has occurred in U.S. fuel in the past

would thermal diffusion be important.

The Pyrocarbon Layers

Pyrocarbon is a dense layered carbon structure. The goal is to make the pyrocarbon as isotropic
as possible during the deposition to ensure the best radiation stability of the layer. Some data
exist on effective diffusivities in the PyC layers. Measured values from BISO particles (without
SiC) have been collected and the results shown in Figure 3-56 (IAEA 1997). These data suggest
that the dense pyrocarbon layer is a very good barrier to noble gas release with significant
diffusional releases not observed until temperatures near 2000°C are reached. The PyC layers do
not pose significant barriers to release of cesium, silver and strontium under normal or accident

conditions.

The mechanism for the transport of gaseous and metallic fission products in the PyC layer has
not been the subject of significant study in the world gas reactor community. A complete
understanding of the mechanism responsible for noble gas transport in PyC is somewhat lacking.
A comparison of different measurements and calculations are overlaid on the original diffusivity

data in Figure 3-57.
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Figure 3-56. Fission product diffusivities in PyC.

Gas Phase Transport

The measured diffusion coefficients suggest very slow transport through the layer. Permeability
measurements using He and CO (Braun et al. 1980) indicated by the red box in Figure 3-57,
suggest very slow transport of these gases consistent with the measured fission product
diffusivity. By contrast, diffusion predicted by the Knudsen diffusion model in for nano-
porosity or viscous diffusion for micro-porosity (the yellow and blue boxes respectively) if
applied to the PyC layer would predict transport rates that are 6 to 10 orders of magnitude faster
than the measured data on BISO particles. These results suggest either (a) Knudsen diffusion of
noble gases is extremely small in PyC perhaps because the interconnected porosity is very low or

(b) that Knudsen diffusion is not the mechanism responsible for noble gas transport in PyC.
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Figure 3-57. Fission product diffusivities in PyC compared with permeability data (red vertical
box) and Knudsen (blue horizontal box) and viscous (yellow horizontal box) diffusion estimates.

Metallic Fission Product Transport and Trapping

For some of the fission metals like cesium and strontium and even iodine, it is valuable to
examine literature related to battery storage where alkali and alkali earth elements and even
bromine and carbon monoxide have been intercalated in graphitic materials (Mathur et al. 1996;
Hollerman et al.1995; Palnichenko and Tanuma 1996; Levi and Aurbach 1999). Intercalation,
the insertion of guest atoms into a host structure, has been studied extensively and a diffusion
and trapping mechanism has been proposed as the mechanism responsible for the resultant

transport behavior in the material (Bisquert and Bikhrenko 2002). Thus it is fair to expect
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intercalation to be the mechanism responsible for the transport of Cs, Sr and perhaps even iodine
and CO in the PyC. A classic diffusion and trapping model has been proposed for modeling the
transport, with trapping occurring perhaps at the carbon crystallite edges and defects in the

graphitic material.

Diffusion and trapping is modeled using a simple modification to classical Fickian diffusion as

shown in the following equations (Longhurst et al. 1998).

X _pvie-L
a a
< _ wﬁC—rCT
a N

0
xT_xT_CT

Trapping acts as impedance to diffusion. Many times a concentration dependence of diffusivity
is observed, which is an indication that trapping is involved. As the traps get filled at high atom
concentrations in the material, the observed transport increases. Thus, one can also write an

expression for an apparent diffusivity as follows (Olander 1976):

s . D D
@ WXy D E. —E. x
(1+ T) 1+ 0 ex trap diff AT
0 e p( T ) N)

o

Where:

D = diffusivity (m%/s)

w = trapping rate(/s)

r = resolution or release rate from the trap(/s)

A = jump distance (m)

v,= Debye frequency (/s)

X = empty trap density (atoms/m’)

Etp = trap energy (ev)

Egisr = diffusion constant activation energy (ev)

N = number density of host material (atoms/m’)
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An initial concentration of traps is assumed to exist in the material and a mass balance on the
traps is performed to determine when all of the trapping sites are occupied. To model the
behavior in detail, the trap concentration or trap density is required as well as the energy of the
trap, which is important to model release from the traps accurately. Irradiation is known to result
in the production of traps via defect formation and thus can complicate this picture somewhat.

A few simple parametric and sensitivity calculations can be used to understand the magnitude
and importance in PyC layers of TRISO-coated particle fuel. Figure 3-58 plots the diffusion
coefficient of Cs in PyC’ and SiC along with the apparent Cs diffusion coefficient in PyC for
different trap concentration levels from 10 to 5000 ppm using the measured 4 ev trap energy for

graphite.

The transport through the TRISO coating will then be controlled by the lowest diffusivity in the
figure. Under accident conditions, the SiC diffusivity is the lowest suggesting it is the greatest
barrier to cesium release. Under normal operating temperature, trapping can lower the apparent
diffusion coefficient in PyC significantly. A comparison of the apparent diffusivities in the PyC
with that of PyC with no traps suggests that the apparent diffusion coefficient can be four to five
orders of magnitude lower than the intrinsic diffusivity depending on the trap concentration. At
the higher temperatures, the release rate from the traps is so large that the effects of trapping is

diminished somewhat.

3 Existing German data were measured on BISO particles. Concentrations are probably high enough that trapping
effects were small and thus the measured diffusion coefficients are representative of transport without trapping.
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Figure 3-58. Effects of trapping on apparent Cs diffusivity in PyC.

However, it is important to remember that diffusion and trapping are dynamic phenomena. As
atoms diffuse through the layer a certain fraction is trapped. As these traps are filled the
apparent diffusivity increases. In fact, the magnitude of the intrinsic diffusion coefficient in PyC
is high enough that significant diffusion of cesium into the PyC is expected during normal
operation. The Cs concentration in IPyC is expected to be much greater than the trap density,
perhaps at the level of 0.5 to 1% atom concentration, so the traps would fill quickly and not
affect overall transport behavior. Thus, we conclude that trapping is not very important on the
transport behavior in the [IPyC layer. However, in the OPyC layer, the Cs concentration in OPyC

is much smaller, on the order of the trap concentration expected in graphite. Thus, in the OPyC

layer trapping could result in a much slower transport.
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Similar analysis for Sr suggests that given the very low release of Sr from the kernel during
operation, the Sr concentration in the [PyC would be at the high end of the trap concentration
and thus may not be influenced by trapping. In the OPyC, the Sr concentration is much smaller

and trapping effects could be very important.

The SiC Layer

SiC in TRISO-coated particle fuel is a high-density polycrystalline beta-SiC. It is the major
fission product barrier in the fuel. As with the pyrocarbon layer, data on the effective diffusion
coefficients of noble gases, cesium, strontium and silver have been inferred from integral release
measurements (IAEA 1997). Figure 3-59 plots the effective diffusion coefficient for noble

gases, cesium, strontium and silver.

Transport Mechanisms

The mechanism for the transport of gaseous and metallic fission products in the SiC layer has not
been the subject of significant study in the world gas reactor community. A complete
understanding of the mechanism(s) responsible for fission product transport in SiC is somewhat
lacking. A Knudsen diffusion mechanism could be postulated for the transport of noble gases
and Ag vapor through the SiC layer especially under normal operating conditions. The
interconnected porosity of the SiC layer is expected to be quite small because the beta-SiC is
very high density (3.21 to 3.23 g/cc is commonly fabricated). Under accident conditions, bulk

diffusion may play an increasing role in the transport.
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Figure 3-59. Diffusion coefficients of Xe, Cs, Sr and Ag in SiC.

For the other metallic fission products, a mixture of grain boundary and bulk diffusion has been
postulated depending on temperature, with grain boundary diffusion most likely operable at low
temperatures and bulk diffusion at high temperatures representative of accidents. The
magnitudes of the activation energies in Figure 3-57 tend to support this theory. A comparison
of the effective diffusion coefficients for fission gases, Cs, Sr and Ag in SiC with more recent
measurements on other species in SiC can shed additional light on the underlying mechanisms.
Figure 3-60 overlays the original data with self-diffusion data for C and Si in SiC (red box) and
grain boundary diffusivities for Fe, Cr (blue box) (Fusamae 1996; Takano et al. 2001). The
magnitude and slopes of the grain boundary diffusivities for Fe and Cr are similar to that for Cs

and Sr perhaps indicating that grain boundary diffusion is the dominant mechanisms for Cs and

201



Sr transport through SiC. The slope of the C and Si self-diffusion coefficients are similar to that

for Xe at high temperature suggesting that a vacancy mechanism may describe noble gas

transport in SiC.
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Figure 3-60. Comparison of C and Si self-diffusion coefficient (red box) and Fe and Cr grain

boundary diffusivities (blue box) with fission product diffusivities inferred from integral release
measurements on coated particles.
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Grain Boundary Diffusion

It appears that both grain boundary and bulk diffusion may be important in describing fission
product transport in coated particle fuel. The importance of each mechanism will depend on the
temperature, the individual diffusivities in the bulk and along the grain boundaries, and the area
fraction occupied by grains and boundaries. Grain boundary diffusion has been studied
extensively in the literature. It can act as a fast diffusion channel in polycrystalline materials.
This fast diffusion sometimes manifests itself as a very high pre-exponential factor, D,, in the
measured diffusion coefficients. The classic Arrhenius formalism suggests that D, should be on
the order of the product of the Debye frequency and the square of the lattice spacing for atomic
diffusion. (For many materials this is ~ 10° m%/s). Experimentally observed values can be 10’
greater than this value (Wang et al. 2002)and may be related to the presence of grain boundaries,
defects and surface effects. The influence of grain boundaries has been studied extensively and
three different kinetic regimes have been found: Type A, B and C (Mishini and Herzig 1999).
Figure 3-61 sets up the analytic picture of a grain boundary of thickness, 8. The grains are of
width d and a uniform concentration of the fission product, C,, exists across the grains and grain
boundary. A segregation coefficient, s, describes the ratio of the concentration in the grain and
in the boundary at the surface interface. Solutions are then sought to the classic Fickian diffusion
equations in two dimensions in both the grain, denoted by v in the figure, and the grain

boundary, denoted by gb, in the figure.

)
D, |
| d
Cv(x’y) : <>
Da
- Caxy)

Figure 3-61. Schematic of grains and grain boundary.
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In Type A grain boundary diffusion, the penetration distance into the grain is much greater than
the grain boundary thickness. In this case, both grain boundary and bulk diffusion are operative
as would be the case for high temperatures and long heating times as is the case in safety testing
of fuel particles. In this case, an effective diffusion coefficient is measured which is a volume
weighted average of the bulk and grain boundary diffusion coefficient. The concentration profile
is given by a classic complementary error function using the effective diffusivity. For Type A

kinetics, these conditions are summarized below.

(D.1)"? >>d

c,=sc,
Deﬁ':va +(1_f)ng
P _ Y
c —erfc(2 = t)

eff

In Type B kinetics, there is much greater penetration down the boundary than into the grains. In
this case, what is actually measured is an apparent diffusion coefficient sometimes denoted as
Py, which is the product (s & Dg). This regime may be applicable at high irradiation
temperatures. The analytic conditions for Type B kinetics and the resultant solution to the

diffusion equations are given by:

so<< (D) << d

D, dnc_
P, =s6D,, = 1.322‘/—:(— =) >3

where the spacial derivative term is the measured concentration profile in the sample.

In Type C kinetics, bulk diffusion is “frozen out” and the transport is dominated by grain
boundary diffusion [(D,t)? << s8]. This is probably applicable at very low temperatures,
conditions that may be representative of average irradiation temperature experiments. In this
case, the concentration is given by a Gaussian for a point source and an Error function for
constant source with the effective diffusivity equal to the grain boundary diffusivity, Dy,. These

idealized situations are useful to understand the concepts of grain boundary and bulk diffusion in
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polycrystalline material. However, in practice the microstructure of the material is more
complex and development of appropriate mixture rules to establish an effective diffusivity
through the structure is an area of active research (Zhu et al. 2001). Figure 3-62 compares three
different microstructures that may bound that expected in SiC. The large columnar structure,
which is found in some SiC, is idealized in the left portion of the figure. In this case, the volume
weighted mixture rule for the effective diffusivity is appropriate. At the other extreme is the
case of SiC with an idealized laminar structure. In this case, a reciprocal series approach to
establishing the effective diffusivity may be appropriate. In the middle of the figure is a
schematic representation of small-grained SiC, which is the form most sought after in coated
particle fuel. In this case there is no exact mixture rule to use, but the two extreme cases are

expected to bound the actual behavior.

m =

Idealized large Small grain |dealized laminar
columnar structure structure structure
Dngb

D, =D,(1-/)+D,f D = D= )+ Dyt

Figure 3-62. Influence of microstructure on apparent diffusivity.

Simple Integral Coating Model

In the previous sections, the transport mechanisms in each layer have been reviewed. In this
section we develop a simplistic integral model of release from TRISO-coated particle fuel using
some of the ideas and data in the previous sections and present some preliminary calculations

using the model.
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Morgan and Malinauskaus (1977) developed an analytic solution for depletion of a fission

product through a single coating layer given by:

FR—1_ ﬁi exp(—D*taf./cSz)sin(an) |
b7 [ZKan +(4ba, /5)sin’® an)]+ Ksin(2a,)
where
cot(e,)=(ba, /KO)—(d/be,)
K=(A4/V)s

a = the inner radius of the coating,

b = the outer radius of the coating,

A = the surface area of the inside of the coating,

V = the volume inside the coating, and

S = segregation factor (ratio of surface layer concentration to source concentration).

If we consider the TRISO coating as a composite layer then we can use the simple resistance

concept to model all three layers as one layer and write the apparent diffusivity D* as

5 _ é}PyC 5SjC 5OPyC
D* - De.ff De}f + Deﬁ‘

IPyC sic opryC

This simple model uses effective diffusivities for each layer and can account for trapping if
needed, transport through cracks or pores, and different microstructures with the level of detail
available to the user. The model also accounts for the effects of a depleting source and can

consider partitioning(s) between coating layer and kernel.

We have used this model in conjunction with the Booth release model from the kernel to perform
some simple scoping calculations for diffusional releases from the particle expected during a
constant 1600°C heating and a depressurized conduction cooldown. No thermal diffusion is
included in the model. (Note that in the real event the matrix can absorb the metallic fission
products and thus the results are not intended to represent an accurate model for the entire
reactor, but instead, should be viewed as a scoping tool to understand what phenomena and

factors are important in the particle.)
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Figure 3-63 and Figure 3-64 plot the fractional release for various fission products during post-
irradiation heating at 1600°C following a constant three year irradiation at 1200°C typical of a
peak fuel particle in a prismatic gas reactor and a ten cycle three-year 600 to 1200°C cyclic
irradiation expected in a pebble bed reactor. The results suggest that the irradiation temperature
has at best a modest influence on the release at high temperature, given the long time at

temperature in these calculations.

Fractional Release from TRISO coating at
1600°C accounting for release from kernel
following 1200°C/3yr irradiation
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Figure 3-63. Fractional release from a coated fuel particle during 1600°C heating following a
three year irradiation at 1200°C.

Fractional Release from TRISO coating at 1600°C
after 3 yr PBMR irradiation
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Figure 3-64. Fractional release from a coated fuel particle during 1600°C
heating following a three-year ten-cycle PBMR irradiation between 600
and 1200°C.
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The calculated diffusional releases from a conduction cooldown (see Figure 3-65) following a
PBMR irradiation are shown in Figure 3-66. The conduction cooldown is characterized by a

slow heatup to a peak temperature of ~ 1600°C followed by a gradual cooldown over the course

of hundreds of hours.
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Figure 3-65. Thermal response during a conduction cooldown.

By comparison to the releases during a constant high temperature heating in Figures 4-63 and 4-
64, only silver and strontium releases from the particle are calculated given the magnitude of the
diffusivities in the layers and the time/temperature profile in the accident scenario given in
Figure 3-65. These results illustrate the importance of time at temperature on the magnitude and

timing of the calculated releases.
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Figure 3-66. Calculated diffusional release from TRISO coated particle during
a conduction cooldown following a three-year ten cycle PBMR cyclic irradiation.

Table 3-15 presents the results of two sensitivity studies: (a) a case where all temperatures are
increased by 100°C and a case where the diffusivity in the SiC layer has been increased by a
factor of 10 over the base value. The results show modest impact of between a factor of two and

six on the overall release for silver and strontium and little impact on either noble gases or

cesium.

Table 3-15. Effect of increased temperature and increased SiC diffusivity on diffusional

releases from TRISO coated particles.

Cases Base +100 °C 10X SiC Diff
Fission Product
Kr/Xe 0 0 0
Ag 0.27 0.59 0.98
Cs 0 0 2.54E-05
Sr 0.0098 0.026 0.06
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As a final sensitivity study we examine the influence of the segregation factor on the overall
diffusional release from the particle. The segregation factor can be used to account for the build
up of fission products that may occur near cracks because of the fast diffusion. Figure 3-67 plots
the fractional release versus dimensionless time for four different segregation factors (1, 5, 10,

50).

Fractional Release versus Dimensionless
time and segregation factor
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Figure 3-67. Effect of partition coefficient on fractional release during heating.

The results suggest that the fractional release at a given time can vary easily by a factor of 2 to 3
depending on the magnitude of the partitioning that exists at the interface. Reference (IAEA
1997) suggests that segregation factors between 0.3 and 3 have been measured. The simple
calculation suggests that segregation or the build up of fission products at the interface between
layers may explain some of the variability that has been observed in heating tests of coated
particles irradiated to nominally the same conditions. The model presented here, although
simple, can help scope out the importance of different reactor parameters on the source term

from a gas reactor.
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One-Dimensional Analysis in Coated Particle Fuel Using TMAP4

Based on the scoping assessment of fission product transport mechanisms in the previous
sections, we have developed a one-dimensional fission product transport model for the TRISO-
coated particle using the TMAP4 code (Longhurst et al. 1998). The TMAP4 code solves the
one-dimensional diffusion equation with trapping (if needed) for an arbitrary number of user
defined structures that can be linked together to model the kernel and each layer of the TRISO
coated particle. The code can account for any arbitrary user defined fission product generation
rate during the irradiation. TMAP4 also solves heat transfer through the particle based on any
arbitrary user defined energy generation in the kernel and an imposed outside surface
temperature of the particle. The code can handle both irradiation and accident conditions based
on the needs of the user. It can account for both pebble cyclic heating and steady prismatic
irradiation conditions and can model any conduction cooldown scenario or any temporal
accident heating temperature profile. We have selected this code because of its ability to model

the relevant fission product transport phenomena and its flexibility in input and output.

Input Model

We have developed this model and performed preliminary benchmarks against a series of
German pebble irradiations and post-irradiation heatup experiments. The fuels consisted of both
full size pebbles and reduced sized compacts used in the German fuel development effort. Some
of the pebbles were irradiated in the AVR while others were irradiated in capsules in the FRJ and
HFR reactors. Critical parameters for the irradiations and subsequent post-irradiation heatup are
shown in Tables 3-16 and 3-17 compiled from Gontard and Nabielek (1990). Six specific fuel
elements were selected for analysis: AVR 82/20, SL P1 6, HFR P4 1/8, HFR P4 1/12, HFR P4
3/7 and KFR K3/1. These pebbles were selected because they represented a good range of

irradiation and post-irradiation heating conditions to benchmark against the model.

In the TMAP model, the kernel and each layer of the particle (buffer, IPyC, SiC, OPyC) are
modeled as slabs with individual nodes representing interior locations in each layer. The
geometries of the particles are based on particle batch measurements given in Petti et al 2003).
(The use of Cartesian instead of spherical coordinates results in a very small error in comparison
to other uncertainties in the analysis.) Note that the fuel matrix has not been included in this

model to date.
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The thermal conditions for the capsule irradiations and post-irradiation heatup testing were
simulated in TMAP4 in the following way. For the irradiation, the average temperature of the
irradiation was assumed to represent the outer surface of the OPyC layer of the particle. TMAP4
then calculated the thermal response of each layer using the heat conduction solution option in
the code and the heat transfer properties for each layer presented earlier. The average energy
generation in the kernel was determined from the burnup and irradiation duration. (This is
important to calculate the thermal gradient across the buffer for Soret diffusion). This heat
generation value was used for the entire irradiation duration. To simulate the high temperature
heating, the energy generation was set to zero and the outside of the OPyC layer was set to
follow the time-temperature heating exposure given in Table 3-16 and 3-17. The thermal
response of the other layers in the model was calculated using the heat conduction solution
option in the code. In general, the high temperature conductivity of the layers resulted in little
temperature drop across the particle during the high temperature heating experiment. In a few
cases because of uncertainties associated with temperature measurements during the irradiation
sensitivity calculations were performed where the average temperature was increased by 50 and
100°C. In the case of the AVR pebble, the exact time temperature history is not known with
certainty. The temporal response of a GL3 pebble in AVR from reference data (Gontard and
Nabielek 1990) was used as the boundary condition for the outer surface of the OPyC layer in

that case.

Noble gases, cesium, silver and strontium were modeled in TMAP4 but only cesium was used in
the benchmarking to this point. (TMAP4 can handle up to 10 species.) The fission product
generation rate in the kernel was based on ORIGEN calculations for a gas reactor reactor (Terry
et al. 2001) scaled appropriately for burnup and irradiation duration in the actual experiment.
Diffusion coefficients for the kernel, PyC and SiC layers were taken from German data (IAEA
1997). No segregation is assumed in these calculations; concentrations are continuous across all
the interfaces of the different layers. For the buffer, since Knudsen diffusion was felt to be a
good representation of the transport of vapors in that layer, a value of 107 m*s based on
calculations presented earlier was used for all fission product species. Thermal diffusion was
considered in the buffer layer only and a value of Q*/R of —20000 was used for this set of

calculations.
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Table 3-16. Accident tests with full size pebbles.

Fuel element FRJ2-K13/2 | FRJ2-K13/4 HFR-K3/1 AVR 71/22 AVR 82/20

Particle batch EUO 2308 EUO 2308 EUO 2308 HT 232-245 HT 232-245

Burnup (%FIMA) 8.0 7.6 7.5 3.5 8.6

Fast fluence 0.2 0.2 4.0 0.9 2.2

(10° m?, E>0.10 MeV)

Center temp. (°C) 1150 1120 1200 1250 1250

Surface temp. (°C) 990 980 1020 1050 1050

Irradiation duration (efpd) 396 396 359 481 1253

Heating test temp. (°C) 1600 1600 1600 1600 1600

Heating test duration (h) 160 138 500 500 100

Cs-137 fractional release at | 3.9X 10° | 25X 10° 1.1X10* 20X 107 6.5X 10°

test end

Note: AVR pebble temperatures are generic values and not actual temperatures.

Table 3-17. Accident tests with reduced size compacts.

Fuel element SL-P16 HFR-P4 HFR-P4 1/8 HFR-P4 2/8 HFR-P4 3/7

1/12

Particle batch EUO 2308 EUO 2308 EUO 2308 EUO 2309 EUO 2308

Burnup 10.7 11.1 13.8 13.8 13.9

(% FIMA)

Fast fluence (10 m™, E > 6.7 55 7.2 7.2 7.5

0.10 MeV)

Max temperature (°C) 800 940 940 945 1075

Min temperature (°C) Not 915 915 920 1050
recorded

Irradiation duration (efpd) 330 351 351 351 351

Heating test temperature 1600 1600 1600 1600 1600

9

Heating test duration (h) 304 304 304 304 304

Cs-137 fractional release 3.9X 10" 2.6X10* 20X 107 14X 107 3.9X10°

at test end

Results

Table 3-18 tabulates the measured and calculated cesium release results from the German fuel.

Also included is a description of the fuel specimen, the irradiation conditions (temperature,

burnup, power per particle, fast fluence, irradiation duration) and the high temperature heating

conditions (time at 1600°C).

As expected, the calculated results show very little release of cesium during irradiation. Because

no measurements were made of this parameter, comparisons are unavailable. A comparison of

the releases following high temperature heating shows generally good agreement.
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agreement is for pebble AVR 82/20; reasonably good agreement is seen for pebbles SL P1 6,
HFR P4 1/12 and HFR K3. The largest discrepancy between measured and calculated results is
for pebble HFR P4 1/8. Although this pebble received an irradiation exposure and high
temperature heating that is not that different from HFR P4 1/12, the measured cesium release for
HFR P4 1/8 is about ten times greater than that for HFR P4 1/12. The TMAP4 calculations
suggest that the differences in the irradiation conditions translate into cesium releases that differ
only by about 20%. Sensitivity calculations in which the irradiation temperature is increased by
50 and 100°C result in 10 to 20% more cesium calculated to be released under post-irradiation
heating. Thus, even when accounting for temperature uncertainties during the irradiation, the
calculated releases still are well below the measured data. The Germans (IAEA 1997; Gontard
and Nabielek 1990) suggest that the higher release is not related to classic diffusion but instead is
attributed to enhanced permability of the SiC perhaps due to chemical interaction between
cesium and the SiC leading to greater releases under post-irradiation heating conditions. It is
important to note that the TMAP4 model does not currently have a model for any fission

product/SiCinteractions.
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This review suggests that knowledge of the spatial and temporal temperature distribution in the
reactor is most important for understanding fission product release from gas reactors. Releases are
probably dominated by particle failures during the accident, which have not been considered here.
Particle failure and SiC corrosion by fission products need to be considered in additional to

traditional mass transport.

Different mechanisms are likely responsible for the transport of gases and metals in different
layers. Gaseous transport can be described using pressure driven diffusion models through
porous media but the use of these models requires information on the connected porosity, the
characteristic size of the porosity and the tortuosity of the porous media which are not well
known for the layers of the TRISO coating. Metallic fission product transport is probably a
combination of grain boundary and bulk diffusion depending on the temperature and specific

fission product of interest.

Our preliminary assessment suggests that the power generated in the particle determines
conditions in the buffer (cracked versus uncracked). This in turn defines the initial conditions for
fission product transport. With the exception of cracking, multi-dimensional effects are probably
less important. The calculations presented here suggest that Knudsen diffusion is consistent with
rapid transport through the buffer and cracks but not intact PyC. Segregation/concentration of
fission products at cracks can lead to greater releases and may explain some of the variability
seen in accident heating tests. Thermal diffusion as a result of large thermal gradients (Soret
effect) across the buffer would tend to only be important under the cases of high power
generation in the particle corresponding to very accelerated irradiation conditions that are not

typical of gas reactors.

Effective diffusivities have been obtained from previous German and U.S. work, but the research
did not always focus on the mechanism involved and the researchers did not always reduce the
data with a specific mechanism in mind (e.g. Knudsen diffusion parameters, trapping parameters).
The measured effective diffusivities in PyC and SiC are consistent with both older and more

recent transport coefficient measurements.
Furthermore, our assessment suggests that trapping is important in OPyC layers where

concentration of fission products is on the same order as the trap density. Trapping is much less

important in [PyC and SiC layers.
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Sensitivity studies using currently available effective diffusivities and educated guesses on
trapping parameters and the simple multi-layer diffusion and trapping model presented here can

help scope out these issues in more detail.

Pd - SiC Interaction

The INEEL neared completion of a metallic Pd — SiC interaction model. All available in-reactor
data for Pd penetration in SiC (Lauf 1984; Minato 1990; Montgomery 1981; Tiegs 1982) were
mathematically fitted according to an Arrhenius temperature dependency. Figure 3-68 presents

the Pd penetration rate data with the corresponding least squares fit.
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Figure 3-68. In-reactor data for Pd penetration in SiC.

The above combined data fit is used in the PAFUME model for Pd attack. Also shown in Figure
3-68 is GA’s FDDM/E model (Saurwein 2004) for Pd penetration rate. The PARFUME
correlation predicts lower penetration rates, and hence, lower failure probabilities above about
1300 °C but higher penetration rates and failure probabilities below 1300 °C. This may be

considered conservative relative to the GA model for temperatures of primary interest to gas
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reactors. It should be noted that the GA correlation includes data from high temperature, out of
reactor experiments using simulated fission products. These data and omission of low
temperature results, which tend to show large scatter, may explain the difference between the two

models.

Implementation of the Pd — SiC interaction model into the PARFUME code has begun. The
model first evaluates the Pd penetration depth for a given time and temperature history using the
penetration rate correlation described above (combined data fit). A preliminary particle failure
model assumes failure to occur when the penetration depth exceeds one half the thickness of the
SiC layer. For each time-temperature history, a failure probability due to Pd attack is then
estimated by determining the fraction of particles, with an assumed normal distribution of SiC
thickness, that meet the failure criterion. The overall failure probability is finally determined by
weighting the individual failure fractions by the fraction of particles with the corresponding time-

temperature history.

Preliminary failure probabilities as calculated by the PARFUME model and the GA model for a
simple case of all particles at a constant temperature for 640 days are presented in Figure 3-69.
(The calculations are based on a mean SiC thickness of 35 um with a standard deviation of 3

um.) This comparison clearly illustrates the conservative nature of the PARFUME model.

A more detailed time-temperature history was used to calculate the particle failure probability due
to Pd attack in the Advanced Gas Reactor Fuel Development and Qualification Program
experiment AGR-1. For this case, ABAQUS calculated temperatures for 4000 equal volume
elements within a representative cell (individually sealed and controlled compartment) of the
AGR-1 capsule at the lowest and highest expected power levels. Using MCNP physics
calculations for power over 16 40-day reactor cycles, a thermal history was approximated by
three cycles at high power (high temperature), four cycles at low power (low temperature), and
nine cycles at average power (arithmetic average of high and low temperatures). Again, assuming
a 50% SiC penetration depth failure criterion (and a mean SiC thickness of 35 pm with a standard
deviation of 3 um), the preliminary PARFUME model calculates a failure probability fraction of
5.3 x 10 and the GA model calculates a failure probability of 4.8 x 107"
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The final Pd- SiC interaction PARFUME model will combine the time-dependent Pd penetration

correlation described above with a thinned SiC layer model described in the Task 2 section.

Failure Probability for 640 days at
Indicated Temperature

,, 1-E+00
£ 1.E-02
T 1.E-04 . :
S 1.E06 o = | *PARFUME Fit
; 1.E-08 - .,0’00 o 3 B GA Correlation
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Temperature (C)

Figure 3-69. Failure probabilities due to Pd attack at constant temperature.

Kernel Migration (Amoeba Effect)

The INEEL has incorporated a model for particle failure due to kernel migration, or Amoeba
effect, into the PARFUME code. Kernel migration occurs within the presence of a macroscopic
temperature gradient where particle failure is assumed to occur when the kernel comes into
contact with the SiC layer. The migration distance is calculated according to a standard
formulation (Martin 1993) that utilizes kernel migration coefficients (Kyc) derived from
experimental data. For UCO fuel where kernel migration is expected to be miniscule, a General
Atomics derived correlation (Martin 1993) for Kyc is used. This correlation was actually derived
from UC, data but is considered conservative for UCO. For UO, fuel where kernel migration can
be significant, recent data from the U.S. (Ketterer 1985) and Germany (HBK 1984) were fitted to
an Arrhenius function to derive a kernel migration coefficient correlation. These correlations for

Kyic are presented in Figure 3-70.
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Figure 3-70. Kernel migration coefficients for UO, and UCO fuel.

SiC Thermal Decomposition

The INEEL has begun implementation of a SiC thermal decomposition model. This phenomenon
becomes a significant fuel failure mechanism at high temperatures, generally above 1600 °C.
Model development began by fitting all available SiC thermal decomposition data to an
Arrhenius function. The data were developed by Benz and reported in (Martin 1993) for burned-
back fuel particles from HOBEG, KFA, and General Atomics. Earlier data were reported

(Ghoshtagore 1966) for SiC wafers. Each measurement series was conducted in an inert, non-
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oxidizing atmosphere on exposed SiC. Figure 3-71 presents the SiC decomposition rate data with
the combined data fit. Since SiC that is covered by a layer of pyrolitic carbon decomposes more
slowly that exposed SiC (Price 1977), correlations based upon these data may be considered to be
conservative. The final thermal decomposition PARFUME model will combine this

decomposition rate correlation with a thinned SiC layer model described in the Task 2 section.
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Figure 3-71. SiC thermal decomposition rate data.

3.3 Technical Task Overview- CEA

UCO Fuel

UCO fabrication, composition history under irradiation, behavior under irradiation and accident
conditions have been reviewed. UCO seems to be better in comparison with UO, considering that
particle pressure is lower by avoiding CO production and there is no risk of amoeba effect.
Kernel swelling, fission gas release and diffusion of fission products would be nearly identical as
for UO,. Nevertheless, the CEA assumes that fabrication is not easy. Specifically, a good

homogeneity of the microstructure seems difficult to obtain. Silver and palladium metallic fission
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produced diffusion could be the worst. UO, has been tested in several countries on an industrial
scale whereas UCO has been produced only in the U.S. on a laboratory scale. In conclusion, a
comparison with identical irradiation and layer coating conditions would be useful for decision

making.

Coatings

In the VHTR concept, ZrC is a candidate to replace SiC because of its physical properties.
Zirconium carbide has a melting point at 3540°C and melts eutectically with carbon at 2850°C,
whereas SiC begins to decompose above 2000°C. Irradiations of ZrC coated particles studied
under normal or accidental conditions have shown good results. Zirconium carbide shows higher
resistance to chemical attack by the fission product palladium than SiC, a good retention
capability of cesium (and less for ruthenium). The method chosen for ZrC deposition is to mix Zr
powder with HCI gas diluted in Ar to form ZrCly. Hydrocarbon gases such as CsHg or methane
(CHy4) are used to provide the carbon. A H, atmosphere is used to avoid formation of free

chlorine.

Previous studies have shown that an increase in the ratio of the hydrocarbon gas to the ZrCl, in
the coating gas results in a co-deposition of carbon (i.e., an increase if the C/Zr ratio in the
deposit). In this case, increasing the H, concentration inhibits this effect and allows the ZrC to be
deposited at higher hydrocarbon gas concentrations, which is effective in increasing the coating

rate of ZrC.

Preliminary ZrC coating trials of about 35um thick have been performed. During the deposition
process, however, the C;Hg/ZrCly ratio varied due to an uncontrolled increase of temperature in
the chlorinator vessel (the chlorination is a very exothermic reaction). Thus, it has been
impossible to master the experimental coating conditions to date. Modifications of the chlorinator
vessel are in progress to suppress these technical problems and to focus on the optimization of the

ZrC deposition parameters.
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Figure 3-72. Cross-section of ZrC coated particle produced at CEA Grenoble.

In addition, the following data from the literature have been gathered for ZrC:

Specific heat

Coefficient of thermal expansion
Thermal conductivity

Young’s modulus.

However, permeation, irradiation-induced creep, and swelling data are lacking.
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4. TASK 4: FEASIBILITY OF THE CONCEPT
IN HARD SPECTRUM

Responsible Lead: CEA

Brief Discussion of Objectives:

The feasibility of using particle fuel in a fast neutron environment was investigated. Service
conditions for particle fuel operating in a fast reactor were determined from reactor physics
calculations. Based upon these operating conditions, candidate fuel designs and materials were

evaluated for suitability.

The traditional TRISO fuel particle has been designed for operation in a mild, thermal neutron
spectrum. Of particular concern when this design is exposed to a hard spectrum is the influence
of radiation damage to the coatings. Radiation damage in excess of 200 dpa can be expected in
gas-cooled fast reactors. The influence of He generation (from n-alpha reactions) and void
swelling in the SiC and their influence on SiC strength will be investigated. In addition, the
shrinkage and swelling in the pyrocarbon layers (IPyC and OPyC) at high fast neutron fluences
is significant and may limit the lifetime of the fuel. Material properties of other more radiation-
resistant candidate materials at high neutron fluences will be investigated and incorporated into

the fuel behavior models as needed.

Work on this task included assessing the limits of the TRISO particle concept with respect to fast
fluence. The approach was to consider the particle as designed for a thermal spectrum and to
calculate the stresses and strains generated in the layers by a kernel ((U, Pu)O,) submitted to fast
neutron fluence (coupling of the deterministic model with the GERMINAL code dedicated to
oxide fuel for fast breeders). Nevertheless, the flux was adjusted to reflect the fact that the
power density in gas cooled fast reactors is significantly reduced compared to liquid metal
cooled for example. The results were obtained in terms of the maximum reasonably achievable
burnup given known properties of SiC and their dependence on temperature and fast neutron

damage based on data from the literature (e.g. fusion).
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4.1 Task Technical Overview: CEA

The studies of Gas Cooled Fast Reactor cores in the range 600 to 2400 MW'th, liable to be self
generating without blankets or with limited blankets, reveals in any case the following inputs for
fuel design:

= the need for a high density of heavy atoms,

= a Puenrichment of 15 to 20%,

= the request for materials to sustain fast fluences (E>0.1 Mev) as high as 10*” n/m?,

= the ability of the fuel to retain fission products with the same performance (R/B ratio in
normal, upset and accident situations) as required for thermal reactors.

The fact that fission products are associated with a closed cycle of all the actinides requires in
addition that the fuel should be able to incorporate an amount of minor actinides in dilution for a

fraction of 2 to ~5%, and be reprocessable.

In order to cope first with the conditions above, the burnup value to start with, i.e. 5 at%, is
targeted not to enhance the challenges in fuel design. On this basis different types of fuel are
envisaged. Among them, is particle fuel for which pros, cons and unknowns can be stated as
follows:
= pros: local containment of fission products, different materials ensuring separated
functions

= cons: complex manufacturing,

* unknowns: ability to increase heavy metal content, possibility to find materials able to
work under fast fluence, and burnup potential.
What seems clear at this stage is that particle concept should be associated with large cores only
(with less neutron leakage), the use of dense actinides compounds in kernels (i.e. mixed mono
carbide or nitride rather than di-oxide) and reduced particle layer thickness to kernel diameter

ratios, typically half the current values in HTRs (0.15 instead of 0.3).

A first attempt was made to assess such a particle with the ATLAS code. The concept is BISO

coating, both layers being made out of SiC (dense for the barrier layer, porous for the buffer

216



layer). The relative proportion of the two layers was a parameter of the calculation. The table
below lists the main parameters for the final concept.

Table 4-1. Fuel concepts for gas coated fast reactor.

Kernel
Composition (U,Pu)C
C/M 1.00
Enrichment Pu(%) 20.0
Diameter (um), D 3200* * T/D=15
Initial porosity (50% open) 15%
Coatings, total thickness T SiC(um) 482*
Density high density SiC (z/cm’) 3.20
Density porous SiC ) (g/cm3) 1.6
(initial value)

Reactor parameters were assumed as follows, corresponding to a “low” power density core (~40
MW/m’):

e Peak particle temperature: 600-1200°C

e Power: 3.3 W/kernel

e Fast fluence: 10*°n/m? /at %
Materials behavior was modelled as:

o kernel: swelling, gas release, thermal/elastic behavior (no irradiation/thermal creep)

e dense SiC: swelling (see figure below: swelling vs. fluence and temperature),
thermal/elasto-viscoplastic behavior (irradiation creep)

e buffer: thermal/elastic behavior, densification under irradiation (different hypothesis
tested)

The internal gas pressure is calculated at each time step with updated void volumes and gas

concentrations.
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Figure 4-1. (UPu)C conductivity.

4.2 Task Technical Overview - INEEL

The concept of coated particle fuel embedded in a ceramic or metallic matrix has merit.
However, with the high fast neutron fluence expected in gas cooled fast reactors, the effects of
radiation damage from fast reactions, helium production from (n,a) reactions and hydrogen
production from (n,p) reactions need to be considered. For the PyC layer, irradiation induced
shrinkage and swelling limits the usefulness of this material to fast neutron fluences below 7-10 x
10* n/m* (E>0.1 MeV). Fast neutron fluences in gas cooled fast reactors are expected to be 10 to
50 times greater than this value. The PyC layers would not survive in such radiation damage. For

the SiC layer, data on radiation damage suggests that it is more resilient.

We have evaluated the use of traditional TRISO coatings for gas-cooled fast reactors. The hard
neutron spectra will induce both displacement damage and cause threshold particle reactions that
create an internal volumetric source of hydrogen and helium gases in the material. The resulting
displacement damage and buildup of gases over time can in turn lead to degradation of the

material’s physical and chemical properties over time.



The fast gas-cooled reactor (GFR) spectrum is based on MCNP transport models developed for
the pebble-bed GFR with metallic fuel spheres and supercritical CO, coolant. The GFR reactor is

assumed to operate at a total core power of 600 MWt.

Computer Code

The neutronic analyses were performed with the MCNP (Monte Carlo N-Particle) code
(Briesmeister 1997) version 4B (MCNP4B). This code is a general purpose, continuous energy,
generalized geometry, coupled neutron-photon-electron Monte Carlo transport code and can be
used to calculate reactor core eigenvalues, neutron spatial and spectral fluxes, nuclear reaction
rates, and energy deposition. In our case, we are using MCNP4B to calculate threshold particle
nuclear reaction rates in SiC that produce hydrogen and helium nuclei. The ENDF-VI cross-
sections, 6000.60c and 14000.60c for natural carbon and silicon, respectively, were used in the

calculation.

Nuclear Reactions

Although all of the following nuclear reactions were considered in the analysis, not all of them
actually resulted in a production rate due to the relatively high threshold energy for some of these
reactions. In fact, of the 13 reactions listed above in Table 4-1, only the following four nuclear
reactions, (n,p), (n,d), (n,a), and (n,np) occurred for carbon for the GFR fission spectrum MCNP
tallies. But all five listed nuclear reactions, (n,p), (n,d), (n,a), (n,na), and (n,np) occurred for

silicon.
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Table 4-2. Hydrogen and helium production reactions considered in the analysis.

Element Nuclear Reaction MT Reaction

Carbon (n,p) 103
(n,d) 104
(n,t) 105
(n,a1) 107

(n,2p) 111
(npa) 112

(n,pd) 115
(n,pt) 116

(n,2na) 24

(n,np) 28

(n,nd) 32

(n,nt) 33

(n,2np) 41

Silicon (n,p) 103
(n,d) 104
(na) 107

(n,na) 22

(n,np) 28

Results

Based on the data in Table 4-3, the total hydrogen production rate would be 2.7674E+10
hydrogen atoms per cm’ per second in the SiC material. The corresponding helium production
rate would be 1.6851E+10 helium atoms per cm’ per second in the SiC material. Therefore, from

these production rates one can now estimate both the hydrogen and helium concentration (ppm)

in SiC for a given irradiation time in the GFR (Table 4-4).

Table 4-3. GFR fission spectrum hydrogen and helium production rates by reaction.

Element Nuclear Production Rate Production Rate*
Reaction (reactions/cm’/sec) (reactions/gm —SiC/sec)

Carbon (n,p) 9.960E+05 3.113E+05
(n,d) 2.398E+06 7.493E+10
(n,) 4.482E+09 1.401E+09
(n,np) 1.082E+05 3.380E+04

Silicon (n,p) 2.758E+10 8.617E+09
(n,d) 2.885E+07 9.015E+06
(n,0) 1.235E+10 3.861E+09
(n,na) 1.466E+07 4.582E+06
(n,np) 6.632E+07 2.073E+07

* Density of SiC is assumed to be 3.2 g/cc.




Table 4-4. GFR fission spectrum hydrogen and helium concentrations (ppm) as a
function of irradiation time.

Irradiation Time Hydrogen Helium Concentration
(days) Concentration (ppm)
(ppm)

30 0.04 0.09

60 0.08 0.18
100 0.13 0.30
150 0.19 0.45
200 0.25 0.60
250 0.31 0.76
300 0.38 0.91
400 0.50 1.21
500 0.63 1.51
600 0.75 1.81
700 0.88 2.12
800 1.00 242
1000 1.25 3.02

Displacement Damage

Atomic displacements are accepted as the principal underlying radiation damage mechanism for
energetic neutron radiation in many materials. It is believed that accumulated displacements at
the microscopic level (i.e., radiation damage) form the basis for the changes in material properties
at the macroscopic level (i.e., radiation effects). Therefore, it is important to quantify the amount
of displacements caused to such materials in the radiation field corresponding to their intended
use. Dpa is a commonly accepted measure for radiation damage at the macroscopic level. The
rational calculation of dpa requires the availability of displacement kerma cross sections for the
materials of interest. The displacement kerma cross section has been a useful tool in calculating
dpa because it allows the integration of the energy-dependent response of the material to the
neutron radiation environment. Estimates for displacement kerma cross sections for silicon
carbide and graphite have been developed and the results documented (Ougouag, Wemple, and

Petti 2003).

Modifications have been made to the NJOY99 code to expand the capabilities of the displacement
kerma cross section calculation method. These modifications include a method to calculate the
contributions from generalized (multiple) particle emission, addition of the modified Kinchin-
Pease (NRT) model, and other modifications to model non-monatomic solids more accurately.

The results using the fast gas-cooled reactor spectrum mentioned above yields damage rates of
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0.0403 dpa/day for C and 0.0470 dpa/day for SiC. For a 1000-day fuel lifetime this would result
in about 40 dpa for C and 47 dpa for SiC.

Conclusions

For the fast fission environment of the GFR operating at 600 MWt, the total production rates for
hydrogen and helium generation in SiC have been estimated. These production rates are readily
converted to hydrogen and helium ppm concentrations for a given irradiation time in the reactor
(Table 4-4). For a 1000-day fuel lifetime, 1.25 ppm hydrogen concentration and a 3.0 ppm
helium could be expected to be generated in the SiC. Similar values would be expected in
graphite. The seemingly small gas production rates can be attributed to the high threshold
energies required to induce these reactions (7-16 MeV) and the small nuclear reaction cross
sections (~0.1-0.3 barns) for both silicon and carbon. These gas concentrations are small enough

not to be a first order concern from materials perspective.

In terms of displacement damage, 40 to 50 dpa could be expected in C and SiC of TRISO coated
particles. This damage is based on the average neutron flux in the GFR. Peak damage could be
twice this value if peaking factors are on the order of 2 in the system. These damage rates are
high enough that radiation damage could influence the material properties. In particular the high
radiation damage to the C layers would result in acceptable dimensional change. At this level of
radiation damage, SiC would also see significant property changes in terms of strength, swelling
and other material properties. The use of the traditional TRISO coating is not recommended for

coated particle fuels in fast spectrum reactor applications.
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5. TASK 5: IRRADIATION OF
PROTOTYPE PARTICLES

Responsible Lead: INEEL

Brief Description of Objectives:

The logical follow on to the development and design of advanced prototype particle fuel is

fabrication and irradiation testing. U.S. and French plans are discussed.

5.1 Task Technical Overview: INEEL

The Advanced Gas Reactor Fuel Development and Qualification Program is planning a series of
irradiation experiments in the Advanced Test Reactor (ATR) at the INEEL. These experiments
will irradiate TRISO-coated UCO fuel particles to (and perhaps beyond) maximum conditions
envisioned for a next generation Very High Temperature Reactor (VHTR). To ensure prototypic
conditions and limit potential deleterious interactions, the irradiation acceleration will be kept
within three times that expected for real time in the reactor. The large B positions within the
ATR are well suited for such irradiations. Full burnup and fast neutron fluence can both be
achieved within a reasonable time yet not exceed the 3X acceleration factor. Figure 5-1 presents
projections for 19.7% enriched UCO fuel at the test capsule mid-plane irradiated in a large B
position of the ATR. The burnup projections show the effect of surrounding the test fuel with
graphite holders containing 6 wt% boron carbide. Early in the irradiation, the boron carbide
flattens the power generation within the fuel and allows for greater temperature control of the test.
After 600 effective full power days of irradiation (about 2 calendar years), the fuel reaches a
burnup of 19.4 %FIMA and a fast neutron fluence of 3.95 x 10* n/m* (E>0.18 MeV). These
peak conditions represent an acceleration factor of about 1.5 times that expected in the actual
reactor. Such irradiation conditions would also be suitable for testing other prototype fuel

particles developed in the future.
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Figure 5-1. AGR-1 projections at capsule midplane in the ATR.

5.2 Task Technical Overview- CEA

An extensive HTR Fuel irradiation program (the SIROCCO program) is planned by CEA and
AREVA:

e to provide data on fuel performance under irradiation
e to support fuel process development
to qualify fuel under normal operating conditions, non operating
conditions and accidental conditions
e to support development and validation of fuel performance and fission
product transport models and codes.
This irradiation program will mainly be conducted at the French Material Testing Reactor
OSIRIS (CEA, France, Saclay) with HTR fuel manufactured by the GAIA line (CEA, France,

Cadarache).

Currently, the first two irradiations are well defined and under preparation. These irradiations
address the first step in the qualification of UO,/SiC reference industrial (German fuel). The
objectives of the first irradiation are to verify the quality of the fuel in terms of integrity and

fission product retention.



Table 5-1. Fuel description.

Type of particle UO,Buffer/OPyC/SiC/IPyC

Particle geometry German reference geometry (500/95/40/35/40 p)
Matrix geometry Compact

Enrichment (%) 9.2

Packing fraction (%) ~10 (about 1500 particles per compact)

Table 5-2. Irradiation conditions.

Fuel surface temperature ("C) ~ 1000
Fluence (n/m™) >2x 10"
Power density (W/particle) <0.2
Duration (EPFD) ~150

The fuel quality verification will consist of a direct comparison between new French particles and
German particles. The best historical German particles will be compacted according to the same
CERCA process, the same packing fraction, the same enrichment and irradiated in the same
device (with a separate fission gas release measurement system) under the same irradiation
conditions. This will allow the determination of the new French fuel quality in comparison to the
German reference fuel with a high degree of confidence in terms of fission gas release, PIE and
safety tests. In addition, these two set of particles will be characterized before and after irradiation

with the same QC methods.

The objective of the second irradiation is to verify the ability of the reference particle to withstand

VHTR conditions.

Table 5-3. Fuel description.

Type of particle UO,Buffer/OPyC/SiC/IPyC

Particle geometry German reference geometry (500/95/40/35/40 p)
Matrix geometry Compact

Enrichment (%) 9.2

Packing fraction (%) ~10 (about 1500 particles per compact)




Figure 5-4. Irradiation conditions.

Fuel surface temperature (°C) ~1100 and 1200
Burn up (%FIMA) ~15
Power density (W/particle) <0.2
Duration (EPFD) ~450

The continuous-on-line fission product release measurements and PIE will form the basis of the

industrial fuel qualification program.

Following irradiations will allow for the licensing of the UO,/SiC reference industrial fuel, and
supply material properties for modelling codes, and finally qualify the fuel.In the future, the
SIROCCO program will also deal with optimized HTR fuel (material, geometry...) to obtain high

temperature and high burnup conditions.

In addition to the SIROCCO program, an irradiation of fuel material in HFR has been proposed in
the European program FP6 and is under negotiation with the EC. In the WP3 of the HTR-F
project, kernel and layer properties have been gathered and incorporated into the ATLAS code.
Thermal and mechanical calculations by the code pointed out the most important parameters
governing stresses in the layers as irradiation induced dimensional change rate and irradiation-
induced creep of the PyC layers. Moreover, the properties of PyC can be extremely variable,
being highly dependent on the exact details of the manufacturing procedure. In the past, major
HTR projects have both manufactured coated particles and measured properties of their PyC.
Among these were the Dragon Project, UKAEA and the U.S. Although the Dragon Project and
UKAEA work occurred in the same country, the programs were quite distinct. Understandably,
observed values of properties that are structure sensitive were not identical for materials
manufactured by different organizations. Thus, it would be imprudent to assume that the
properties of PyC deposited on particles manufactured nowadays will be identical to those of the

past, even if attempts are made to reproduce closely previously manufacturing conditions.

In order to be able to obtain the required information, two irradiations are proposed. The design
of the two experiments will be similar, but one irradiation will be relatively short in order to

obtain a fluence of 1-2 x 10’ n/m* (E>0.1 MeV) and the other irradiation will be relatively long




in order to obtain a fluence of 3-6 x 10%. These two irradiations are planned to start

simultaneously:

Table 5-5. Proposed irradiation experiment conditions.

Irradiation #1 Irradiation #2
Irradiation position HFR-G3 HFR-G3
Temperature (°C) 900, 1100, 1300 900, 1100, 1300
Irradiation time (Full Power days) 100 350
HFR cycles (~25 F.P. days/cycle) 4 14
Irradiation time (Calendar days) 120 425
Thermal fluence 0.7-1.2 x 10” 2.7-42x10%
Fast fluence (E>0.1 MeV) 1.0-1.7 x 10% 3.8-6.0 x 10”

Several types of fuel specimens, coating and graphite materials will be made. Batches of about

50-100 particles/kernels will be irradiated in order to be able to have access mean values.




Filename: 6. TASK 5 .doc

Directory: C:\Documents and Settings\talbhd\Desktop\FINAL INERI JAN3

Template: C:\Documents and Settings\talbhd\Application
Data\Microsoft\Templates\Normal.dot

Title: 5

Subject:

Author: test

Keywords:

Comments:

Creation Date: 1/18/2005 12:00:00 PM

Change Number: 2

Last Saved On: 1/18/2005 12:00:00 PM

Last Saved By: test

Total Editing Time: 0 Minutes

Last Printed On: 1/18/2005 12:01:00 PM

As of Last Complete Printing
Number of Pages: 5
Number of Words: 1,113 (approx.)
Number of Characters: 6,200 (approx.)



Appendix A (MIT):
Silver Transport Literature Review and Assessment

Introduction

In many previous silver transport tests, coated fuel particles were irradiated, often at low
temperatures to prevent fission product migration, and then heated, out-of-pile, to measure fission
product release. Various measurement techniques were used to evaluate fission product
migration and release including on-line gas measurement systems, gamma counting for fission
product inventory, periodic analysis of fission product plate-out on cold traps, and electron

microscopy.

Experimenters often selected heating temperatures to represent typical HTGR operating
conditions. However, some experiments were conducted at elevated temperatures to either
simulate accident conditions or to accelerate fission product release. Bullock selected annealing
temperatures between 1200°C and 1500°C, above those expected during operation, in order to
accelerate the diffusive release of fission products (Bullock 1984). While high-temperature
testing may be more aggressive than typical operating temperatures during irradiation, it does
allow experimenters the ability to obtain relative comparisons between different fuel types in a

more efficient manner.

Fuel particles retain fission products either by forming chemically stable compounds in the fuel
kernel or in one of the coating layers or by preventing diffusion through the coating layers.
Fission products that do not form stable compounds in the fuel particle are thought to diffuse
through the coating layers. If the diffusion rate is sufficiently slow, the fission products will
remain in the fuel particle during operation. If the diffusion rates are fast enough, however,

fission products may escape, depending on the temperature and duration of operation.

Diffusion is generally reported as an Arrhenius equation of the form:

Q
D=D -expl — A-1
0 € p(R T] ( )

= diffusion coefficient (m*/s),

o pre-exponential constant (m?/s),

activation energy (J/mol),

universal gas constant (8.314 J/mol-K), and
= absolute temperature (K).
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The two most common types of silver experiments encountered in the literature are batch
experiments in which the total fission product release from a population of particles is measured,
and individual experiments in which the fission product inventory of each fuel particle is

measured before and after heating.

In batch experiments, cold plates typically collect metallic fission products released from a large
population of fuel particles or even whole fuel elements (pebbles or compacts). Periodic analysis,
typically gamma-counting, of the cold plates reveals any condensed metallic fission products
released from the entire population of particles. Sweep gas monitoring during these heating
experiments detects catastrophic particle failure by detecting pulses in release in the sweep gas

stream characteristic of fission gas release accompanying through-coating particle failure.

Although batch measurements during heating experiments can document the overall behavior of a
large population of fuel particles, these measurements do not give any insight into individual
particle behavior. Attempts to measure individual fuel particle inventories are reported in the
literature, but are limited by the time and resources required to separately examine each
individual particle. For this reason, individual fission product inventory measurements tend to
only survey a limited number of fuel particles, on the order of 10-25 per test. While these
individual measurements may supply more detailed information about particle performance, they
are hampered by poor statistics, using only a small number of particles to characterize large
batches of fuel with greater than 3x10° particles proposed for a single HTGR core. Similar to
bulk measurements, individual particle inventory measurements also do not reveal the specific

release pathway.

Batch Measurements

Many experiments have used fission product release measurements from a large batch of particles
during post-irradiation heating to gather information on overall fuel performance. Common
measurements include on-line monitoring of fission gas release in the sweep gas system and
periodic gamma counting of the metallic fission products condensed on a cold plate assembly. In

batch testing, large populations of fuel particles, either loose or bonded in fuel elements e

heated together and the total amount of released fission products is measured. Using analytical
and numerical solutions for diffusion and release from spherical shells, researchers calculate

effective diffusion coefficients in the different layers.
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Assumptions

An inherent assumption when evaluating fuel performance from batch measurements is that all of
the fuel particles within the batch behave the same. This would indeed be the case were a
thermally activated process such as diffusion to be the operative phenomena where one would
expect “average” behavior from similarly fabricated/processed material. Fission gas release
values can be used to estimate the number of individual failed particles by comparing the amount
of fission gas released to the estimated average particle inventory. In most cases, however, solid

fission product collection on cold plates is attributed to all particles equally.

Silver Diffusion in UO;

Silver release from fuel kernels in coated particles via diffusion largely determines the amount of
silver available to escape through the rest of the coatings. Any silver retained in the fuel kernel
itself will not be released from the fuel particle. Several studies have measured silver diffusion
from UQO, fuel kernels either from bare kernels or from BISO particles coated with a buffer and a

single pyrocarbon layer. Nabielek et al. determined the diffusion coefficient of silver in UO, as:

, ~213 &
D,y =549x107 -exp| ———2% |5~
: RT

Dy, (1500°C)=2.68x10% 5"

(A-2)

where D' is the reduced diffusion coefficient, equal to the diffusion coefficient divided by the
grain size, a, squared (Nabielek, Brown, and Offerman 1977).

1

D
D == (A-3)
a

From a separate set of experiments, Nabielek et al. determined a slightly lower silver diffusion

coefficient in UO, at 1500°C:

Diso,1500°€)=9.3x1079 ™! (A-4)

Brown and Faircloth also measured silver diffusion in UO, using radiochemical analysis to
measure the silver content of fuel kernels after irradiation and comparison to the calculated
inventory based on the irradiation conditions (Brown and Faircloth 1976). Testing fuel irradiated
between 1000°C and 1400°C, Brown and Faircloth derived the following reduced diffusion

coefficient for silver in UO, fuel:
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Since the buffer and pyrocarbon layers do not retain silver, Férthmann et al. measured silver
release from PyC-coated particles at 1400°C and determined the kernel release using the
equivalent sphere model (Forthmann et al. 1982). In this model, also known as the Booth model,
the fuel kernel is assumed to consist of spherical grains of equal radius. The equivalent sphere
model also assumes that when diffusing atoms reach the surface of a spherical grain they are able
to move rapidly along grain boundaries; only the spherical grains, not the grain boundaries, slow

atom transport in this model.

2
D, (1400°C) = 6.9x10715 (A-6)
vo,| ) ;

According to Forthmann et al., the time dependence of fractional release from SiC-coated
particles contains two contributions: 1) spontaneous release described by the Booth model, and 2)
diffusion-controlled release starting after a breakthrough time. No explanation is offered for the

observation of spontaneous silver release.

No Silver Retention in PyC

It is well accepted in the literature that pyrocarbon layers do not retain silver. Nabielek et al.
compared silver release from bare kernels and BISO particles, those containing a fuel kernel
surrounded only by buffer and PyC layers. From these results Nabielek et al. concluded there is
no silver holdup in low-density graphite buffers or in any type of pyrocarbon (Nabielek, Brown,
and Offerman 1977). Additionally, Nabielek et al. found that graphite matrix materials also do
not retard silver at temperatures above 850°C. Offermann derived the following diffusion
coefficient for silver in pyrocarbon after implanting silver in flat pyrocarbon samples and heating

at constant temperatures between 450°C and 800°C (Offerman 1977).

—164 L) 12
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McCardell et al. extrapolated this fit to 1250°C, typical of fuel operating temperatures, and
determined that breakthrough times for silver in pyrocarbon are on the order of hours (McCardell
1992). This indicates that PyC does not function as a barrier to silver release during normal

operation.

Verfondern et al. summarized the diffusion coefficients reported from a variety of sources
(Verfondern, Martin, and Moormann 1993). Two diffusion coefficients for silver in pyrocarbon

are listed below with the source country (research program) in brackets:

B —154 5 2
DPyC =53x10"" - CXP[T] T [FRG, USA] (A-8)
D,.=53x10" -exp[ﬂ) m” [Russian Fed.] (A-9)
ve RT ) s

The three diffusion coefficients for silver in PyC discussed above are plotted as a function of

temperature in Figure A-1.
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Figure A-1. Diffusion coefficients for silver in pyrocarbon.
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The breakthrough time through a thin spherical shell can be approximated from the following

relationship:

D=2 (A-10)

where D is the diffusion coefficient (m%s), x is the shell thickness (m), and ¢, is the breakthrough
time (s) (the time when the diffusing atoms reach the outer surface of the shell). At 1500°C, the
relationship shown in Equation (A-10) predicts silver breakthrough from a 40-pum thick PyC shell
in approximately 30 min using the diffusion coefficients in Equations A-7 and A-8 and in less
than 1 sec using the diffusion coefficient shown in Equation A-9. These estimated breakthrough
times through PyC coatings are short enough that diffusion through PyC layers is usually
neglected; any silver released from the fuel kernel is assumed to migrate directly to the inner

surface of the SiC coating.

Silver Transport in Silicon Carbide

Observations recorded during previous testing have suggested that silver migration in coated fuel
particles is governed by diffusion through intact silicon carbide layers. This conclusion has been
driven by results of silver release from coated particles while the volatile fission gases and cesium
are still retained. Through-coating failures, where both pyrocarbon layers and the silicon carbide
layer have failed and the fuel kernel is exposed, result in the release of the fission gases and any
other mobile fission product. At typical operating and testing temperatures, cesium and silver

escape from fuel particles with through-coating failures.

To date, the literature data has been interpreted as representing diffusion-controlled release of
silver through intact silicon carbide layers. Observations of silver release with cesium retention
suggest rapid silver diffusion through intact silicon carbide layers. If the silicon carbide layer
were not intact, both cesium and silver should escape. Additionally, activation energies
calculated for silver diffusion coefficients in silicon carbide (derived from silver release
measurements) fall in the same range as activation energies for grain boundary diffusion of other
fission products (Amian and Stover 1983). Thus, the current interpretation of silver migration
data indicates that silver diffuses along grain boundaries in intact silicon carbide at typical

operating temperatures. Variations in the diffusion coefficients reported, however, are not



consistent with grain boundary diffusion and other observations, described below, raise doubts

about diffusion as the dominant silver transport mechanism.

Nabielek et al. measured silver release from a variety of fuel particles during irradiations and
posit-irradiation anneals. Silver detected by gamma-ray spectrometric measurements in fuel
tubes and other graphite components was interpreted as release due to diffusion. By measuring
the fractional release of silver from a variety of coated particle types, in both loose and elemental
form, between 850°C and 1500°C, Nabielek et al. derived an upper limit of the effective diffusion

coefficient for silver in silicon carbide:

(A-11)
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Nabielek et al. also heated 170 previously irradiated TRISO fuel particles at 1500°C and
measured the total fission product release every 10 days. While cesium and strontium were
retained in the TRISO particles, silver release began after 10 days. According to the authors,
however, the shape of the release curve with heating time is not consistent with silver diffusion in
SiC. At the beginning of the heat treatment silver release matched the characteristic release curve
corresponding to a diffusion coefficient of 10™'° m%s, but as the heat treatment progressed the
silver release corresponded to a diffusion coefficient of 10> m%*/s. The authors suggested instead
that the silicon carbide became gradually "transparent" during heating allowing increased silver
release. Although a physical mechanism for this apparent change in the SiC properties during the
heat treatment was not proposed, this finding suggests that silver release is not dominated by a

classical diffusion mechanism

In other irradiation experiments performed by Nabielek et al. a very steep increase in silver
release was noted between 1140°C and 1240°C in both the shorter and longer duration
experiments (Nabielek, Brown, and Offerman). These results indicate that SiC may only perform

as an effective barrier to silver release at temperatures below 1200°C.

Brown and Faircloth compared silver release behavior from BISO and TRISO particles. While
the BISO particles exhibited rapid silver release starting at the beginning of the annealing period,
the silicon carbide layer in the TRISO particles prevented silver breakthrough for 16 days at



1500°C (Brown and Faircloth 1976). Brown and Faircloth determined an effective diffusion

coefficient for silver in SiC from the breakthrough time:

2
Dy (1500°C) =1.5x107"¢ - (A-12)
S

Amian and Stover measured silver and cesium release from loose particles that had been
previously irradiated at temperatures varying from <<400°C to 1050°C. Other irradiation
parameters included a burnup range between 2.3% and 12.1% FIMA and a fast fluence range
from <0.5x10% n/m’* to 8.2x10* n/m”. Different particle types had different fuel kernel materials
with slight variations in coating dimensions. Water-cooled cold plates in the furnace collected
released silver and were removed and counted periodically during heat treatments. Fractional
release results were interpreted using Fickian diffusion theory and evaluated with a simple
diffusion model with multizone geometry to estimate diffusion coefficients for each heat
treatment. Combining all of the results, Amian and Stéver derived a diffusion coefficient for

silver in silicon carbide (Amian and Stéver 1983):

-218-% 2
Dg. =4.5%x10"" -exp[T’”"k]mT (A-13)

Figure A-2 shows this diffusion coefficient along with the diffusion coefficients listed for each
batch test. The diffusion coefficients cover a span greater than one order of magnitude at any
given temperature. At 1000°C, the 95% confidence region for this diffusion coefficient is

between 2x10" m?/s and 1.5x 1077 m%s.
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Figure A-2. The calculated diffusion coefficients from Amian and Stover's post-irradiation
annealing tests exhibit scatter up to a factor of 30.

Total silver release values were normalized to the estimated silver inventory before heating to
calculate the fractional release. Amian and Stdver attribute scatter in the diffusion coefficient
results to variations in the specific silicon carbide microstructure, which varies from coating to
coating. Within the range of burnup and fast fluence of the tested fuels, the authors found no
dependence of silver diffusion on those variables within the intrinsic scatter of the data (Amian

and Stover 1983).

According to Amian and Stover, activation energies for diffusion in pyrolytically deposited SiC
coatings are approximately 200 kJ/mol while the activation energies for diffusion in single
crystals are about 450 kJ/mol (Amian and Stéver 1983). Given the results of the experiments
performed by these authors, these data (and the diffusion coefficient proposed) suggest that the
mechanism responsible for silver diffusion in SiC is grain boundary diffusion in the
polycrystalline material, not volume diffusion through grains. A grain boundary diffusion
mechanism also accounts for the large scatter in the data, according to the authors. Grain
boundary diffusion depends on the exact microstructure of the sample, which varies from sample

to sample. Grain boundary diffusion is a collection of "different elementary processes" with
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different activation energies. Since each sample has a different microstructure, there will be
scatter in the data reflecting the exact microstructure of each sample (the exact path of Ag
transport through a given set of SiC grains). However, the scatter in the reported data exceeds the

expected variations in SiC structure and the silver path length traveled through the SiC coatings.

Bullock measured the cumulative release of silver and other fission products at three temperatures
from five types of previously irradiated fuel. TRISO coatings formed the basis of the five types
of fuel, but three variations in the fuel kernel material and two variations to the TRISO coating
constituted the experimental base. The five types of fuel denoted by their fuel kernel material
include UQO,; UC,; UCO, a mixture of UO, and UC,; UOZ*(I), UO, with a solid ZrC overcoating
on the kernel; and UO,(2), UO, with ZrC dispersed in the buffer layer. Three sets of ten
particles of each fuel type were selected to be heated at three temperatures: 1200°C, 1350°C, and
1500°C. Fission products released during annealing condensed on the mullite sleeve or tantalum
tube in the furnace. By periodically removing these components from the furnace and counting
them with a gamma detector, Bullock collected fission product release data as a function of time

during the greater than 10,000-hour tests (Bullock 1984).

These heating experiments revealed strong temperature dependence: as the temperature increased,
the fission product breakthrough times decreased dramatically. The breakthrough times also
appeared to depend on the type of fuel particle tested. The UO, (1) particles did not release any
fission products during the annealing tests while the other particle types all released silver with
breakthrough times varying from about 30 h to 8,000 h. Each batch, however, consisted of only
ten particles and one must exercise caution when drawing conclusions about large population

behavior from only a few particles.

The fairly long delay times, in general, before silver release do suggest that no silver escaped
during irradiation. Silver escape during irradiation would have (most likely) required silver
distribution throughout the particle. If that were the case, silver escape during heating would
have occurred much sooner. This does raise concern about the knowledge of the silver
distribution before heating began. The silver concentration at the beginning of heating must be
assumed in order to accurately calculate the diffusion coefficients from release measurements. If

these data are uncertain, however, the uncertainty of the diffusion coefficient will increase.



Schenk and Nabielek conducted post-irradiation annealing of 60 mm diameter spherical fuel
elements, with 16,400 particles per element, between 1600°C and 1800°C. Seven fuel elements
with low-enriched UO, with TRISO coatings were irradiated and heated. During irradiation these
elements experienced a range of burnup from 3.5% to 10.6% FIMA, fast fluence from 0.2 x 10*
n/m® to 5.9 x 10* n/m?, a mean irradiation temperature of 700°C to less than 1280°C, and
durations from 350 to 1200 full power days (Schenk and Nabielek 1991). The fission product
content of each spherical element was measured before and after heating. In addition, electrolytic
deconsolidation of the elements after heating exposed individual fuel particles, which could be

selected from specific locations of the element and further analyzed.

During heating, a water-cooled cold finger with a removable condensation plate collected
released fission products. Analysis of the condensation plate determined the quantities of "*’Cs,
"Sr, and '"""Ag. Analysis of the matrix graphite from the fuel elements after electrolytic
deconsolidation also determined fission product release. All seven fuel elements released a
greater fraction of their silver inventory than any other fission product. The high release of silver
from these fuel elements was attributed to its high mobility in silicon carbide, but Schenk and

Nabielek did not calculate any diffusion coefficients from these results.

Schenk and Nabielek derived the fractional release values by comparing the total amount of silver
released during heating (as trapped on the cold plate) with the measured inventory before heating.
If one looks, however, at the reported values from a different perspective, one can calculate the
number of failed particles necessary to release the same amount of silver. With 16,400 particles
per element, if one particle lost its entire silver inventory, the effective fractional release would be
6.1x107. Using this base value, the fractional release values are converted to an equivalent

number of failed particles as listed in Table A-1.



Table A-1. '""Ag fractional release increases with heating temperature.

Heating Temperature | Heating Time | ''""Ag Fractional | Equivalent
(°O) (h) Release Failures
138 2.8x 107 46
1600 500 9.0 x 10 15
500 2.7 x 107 443
1700 185 4.8 x 107 787
100 0.17 2788
1800 100 0.67 10988
200 0.62 10168

Although an increase in silver release would be expected to accompany an increase in
temperature, according to the Arrhenius form of diffusion, seen in Equation A-1, other
mechanisms may also produce these results. Measurements of silver release from the collection
of coated fuel particles inside an element do not provide any insight to the mechanism controlling
silver transport. The equivalent failures calculated from the fractional release values shown in
Table A-1 indicate that a mechanism resulting in complete silver loss from a fraction of the
particles in the element could produce the same observed quantities of silver release. As the
temperature increases the number of particles releasing their entire silver inventory would also
increase if silver transport were dominated by cracks in the SiC layer whose formation was

exacerbated by higher temperatures.

Forthmann et al. also measured the fractional release of silver from UO, TRISO-coated fuel
particles in post-irradiation heating at 1400°C, but they focused on the variation in the calculated
diffusion coefficient with variations in SiC coating parameters (Forthmann et al. 1982) While
such variables as the SiC density, grain size, microstructure, and light reflectivity had no apparent
correlation with silver release the authors did report a range of diffusion coefficients
corresponding to the range of deposition temperatures and carrier gas used during SiC deposition.
Seven types of fuel, compressed with matrix graphite to form compacts, were heated at 1400°C
after irradiation. A cold plate collected silver released from the fuel particles. Silver was leached

off the cold plate and counted after different annealing periods.

In an effort to account for multiple contributions to silver release Forthmann et al. modeled the
results with a spontaneous release portion, described by the Booth model for release from the
kernel, along with the more complicated diffusion-controlled release after a breakthrough time

(Forthmann et al. 1982). The spontaneous release portion of the silver release curve provides a

A-12



steady contribution of silver before the general breakthrough of silver and is most likely due to
uranium contamination outside of the silicon carbide layer. Any silver born outside the silicon
carbide layer will be released almost immediately and contribute to the overall silver deposition

on the cold plate.
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Figure A-3. Diffusion coefficients at 1400°C for ''""Ag in SiC deposited by H, and Ar+H, have
opposite trends with deposition temperature.

The diffusion coefficient increased from 8.0x10"" m?s to 2.0x10™'® m%s as the deposition
temperature increased from 1300°C to 1550°C for SiC deposited in pure hydrogen (Forthmann et
al. 1982). Forthmann et al. also noted that the SiC microstructure consisted of striated structure
with free silicon when the deposition temperature was 1300°C, crystalline structure with small
crystallite sizes when the deposition temperature was 1400°C, and large columnar crystals when
the deposition temperature was 1500°C. The presence of free silicon in the SiC deposited at
1300°C does not result in increased silver diffusion as suggested by Nabielek et al. (Nabielek,
Brown, and Offermann 1977). For SiC deposited in pure hydrogen, it appears that the silver
diffusion coefficient increases as the SiC microstructure becomes more columnar, but the total
change in the diffusion coefficients with SiC deposition temperature is much smaller than the
range observed in the literature that a definite trend cannot be verified. Additionally, the residual
stress state within the SiC coatings is different for different SiC grain structures and those stresses

may play a role in the ability of SiC to retain silver.



For SiC deposited in a mixture of argon and hydrogen, the diffusion coefficient decreased from
9.9x10""m? /s to 7.3x10""7 m?/s as the deposition temperature increased from 1300°C to 1550°C.
Forthmann et al. observed less variation in the SiC appearance with temperature for the SiC
deposited in an argon-hydrogen mixture. The SiC consisted of crystalline structure with small
crystallite sizes when the deposition temperature was 1300°C, small and uniformly distributed
crystallites when the deposition temperature was 1400°C, and coarse-grained but not columnar
grains when the deposition temperature was 1550°C. No correlation between the SiC

microstructure and silver release could be determined from these data.

Although the trend of diffusion coefficient change with respect to deposition temperature appears
fairly clear (at least for SiC deposited in pure hydrogen), as shown in Figure A-3, and the
uncertainty bands are fairly small, the values reported here are all within the range of diffusion
coefficient reported by other authors. Based on the small variation in Forthmann et al.'s data
relative to the other data reported in the literature, one cannot conclude that the change in SiC
microstructure associated with the change in SiC deposition temperature is a primary contributor

to silver transport in SiC.

A collaboration between JAERI (Japanese Atomic Energy Research Institute) and ORNL (Oak
Ridge National Laboratory) irradiated and heated UO, TRISO-coated particles. Capsule HRB-22
contained 12 annular fuel compacts composed of 32,200 UO, TRISO-coated particles dispersed
in a graphite matrix. The irradiation of capsule HRB-22 lasted 88.8 effective full power days
with a maximum burnup of 6.7% FIMA, maximum fast fluence of 2.8x10* n/m’, and the

maximum fuel compact temperature maintained below 1300°C (Minato et al 1998).

The sweep gas monitoring system examined fission gas release during irradiation with coating
failures causing a distinctive pulse in the ion chamber signal. Four pulses in the sweep gas
monitoring system indicated single particle failures at 29.57, 32.52, 56.91, and 83.07 effective
full power days. These through-coating failures suggest a failure fraction during irradiation of
1.2x10™. The release-to-birth ratio (R/B) was also monitored during irradiation. The R/B results
suggest that there were two through-coating failures at the beginning of the irradiation. Silver
release was not measured during irradiation, but further heating tests on this fuel are discussed

below.



Accident condition testing on the irradiated fuel subjected one intact compact to 219 h at 1600°C.
Krypton gas release was monitored continuously during the heating test and silver release was
monitored periodically by measuring collection on a removable deposition cup in the furnace.
High gas release measurements during the test indicate that there may have been two or three
failed particles at the beginning of the heating test. The rapid krypton release indicative of an
additional particle failure caused a spike in the gas monitoring system about 49 h into the test.
According to the measurements of the deposition cup, the fuel particles in the element released
38% of their silver while only releasing 1% of their cesium inventory. Measurements of the
remaining solution after deconsolidation suggested there were at least two failed particles in the
compact. As in many other tests reported in the literature, silver release significantly exceeded
cesium release. The release information, however, does not provide any insight regarding the

mechanism governing silver transport in SiC.

Verfondern et al. summarized silver diffusion coefficients in SiC from a number of sources. The

diffusion coefficients reported are listed below:
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The diffusion coefficients calculated from the experiments described in this section are displayed
in Figure A-4. The diffusion coefficients span more than an order of magnitude at most

temperatures and more than 2 orders of magnitude at 1200°C.
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Figure A-4. Silver diffusion coefficients derived from irradiation and annealing experiments
span more than an order of magnitude.

Individual Inventory

Whereas fission product release measurements on large batches of fuel provide useful
information on overall performance, individual particle measurements attempt to develop a more
detailed image of fission product transport. Individual particle measurements include techniques

such as gamma counting of fission product inventory measurements and electron microscopy.

Assumptions

One of the primary challenges with conducting measurements on individual particles is the time
required to count each particle. Counting times up to 8 h have been required to obtain reasonable
counting statistics. This demand on resources limits the number of particles that can be
individually counted to evaluate fission product release. Therefore, small populations of
particles, sometimes just 10 to 25, are investigated and assumed to be representative of much

larger batches, on the order of tens of thousands of particles.
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Silver Migration in Silicon Carbide

In addition to batch testing, Nabielek et al. measured the individual silver content of particles.
Although the particles selected appeared intact and had retained all of their cesium and other
fission products, the authors noted "drastic variations" in silver content. They attributed the
scatter in particle silver release to variations in availability and accessibility of free silicon on the
silicon carbide grain boundaries as the presence of free silicon on the SiC grain boundaries

facilitates silver migration.

After heating ten selected particles from the capsule HRB-15B irradiation, Bullock examined
each particle individually and measured the silver, cesium, europium, and cerium contents. From
each of the five different irradiated fuel types, Bullock selected ten particles for each of the three
annealing experiments. Intermediate counting of mullite collector sleeves and tantalum tubes
during heating measured fission product release during the test. In addition, the fission product

inventory of each particle was counted using gamma spectrometry before and after heating.

The individual fission product inventories after irradiation but before heating were normalized to
the '“Ru inventory, a chemically stable fission product in the fuel particle, and the experimental
and calculated values were compared. These measurements and calculations indicate whether
any of the fission products were released during irradiation. Good matching between the
experimental and theoretical values for the **Cs and '*’Cs inventories indicate no cesium release
during irradiation. The experimental measurements showed about 25% less silver, 15% less
cerium, and 25% more europium than predicted. However, uncertainties in the variables used to

calculate these fission product inventories can account for the discrepancies.

The silver release per particle during heating was "highly nonuniform." Many of the heated
particles released more than 50% of their silver, but in seven out of the eight batches experiencing
silver release, at least one particle retained all of its silver. Cesium, on the other hand, appeared
to be mostly retained with only three particles from two of the batches losing their entire cesium
inventory. Partial cesium release was not observed in any particle. The range of observed silver
release, from complete retention to complete release, casts doubt on diffusion as the governing
mechanism. In identical particles in the same test, a diffusion process should have produced
similar release results. The fact that some of particles retained their entire silver inventory while

others experienced total release indicates that the release mechanism for silver is not intrinsic to



all SiC coatings; rather, SiC can be an effective barrier to silver even at temperatures up to

1500°C.

Silver release occurred in four of the particle types: UO,, UC,, UCO, and UO,"(2) (ZrC dispersed
in the buffer). No silver release was observed from the UO, (1) (ZrC coating around the fuel
kernel) during the almost 3000-hour test. The SiC microstructures varied considerably from
laminar to large columnar grains among these four fuel types. The UO, particles, suffering the
greatest silver release, consisted of columnar, large-grained SiC. The UO, (1) particles retained
all their silver and other fission products and had laminar structured SiC, but the presence of the
solid ZrC coating on the fuel kernel may have also aided retention. The UCO particles also had
laminar SiC and good silver retention. However, the UC, particles, also with laminar SiC, readily

released silver indicating that laminar SiC is not the sole reason, if at all, for silver retention.

Silver breakthrough times increased significantly as the heating temperature decreased. Figure
A-5 shows the silver fractional release curves for the UO, (2) particles during heat treatments at
three temperatures. Measurements of the fission product inventory before the heat treatments
provide the total amount of silver in each particle at the beginning of each test, but do not reveal
the exact location or distribution of the silver. Any silver not already released from the fuel
kernel into the coating layers must diffuse through at least part of the fuel kernel and the coatings
before it reaches the silicon carbide. For particles irradiated under the same conditions the
location and distribution of silver should be similar, but without knowing the exact initial
condition it is impossible to know the contribution of silver retention due to holdup in the fuel

kernel versus the silicon carbide layer.
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Figure A-5. Silver breakthrough times from TRISO-coated UO2*(2) particles increase as the
heating temperature decreases.

Silicon carbide microstructures within a given batch of fuel appeared similar after etching, but
silver release varied from particle to particle within a batch. While variations in SiC
microstructure may appear to play a role in silver release between batches, SiC microstructure
does not, by itself, explain the large variations in silver release within the batches. Short-circuit
paths or cracks in the SiC layers, however, could explain the large variations in silver release with
flawed particles losing silver while truly intact SiC coatings retain silver. Silver must diffuse
through the fuel kernels within coated particles before release is observed. The time and
temperature dependence of silver diffusion through fuel kernels contributes to the apparent time

and temperature dependence of overall silver release.

Experiments conducted at the Oak Ridge National Laboratory studied the interaction of silver in
UO; TRISO-coated particle in out-of-pile testing. Silver was mixed with UO, during fuel kernel
fabrication and the standard TRISO coatings were applied (Pearson, Lindemer and Beahm, 1980;

Pearson, Lauf and Lindemer 1982). The silver-doped fuel particles were not irradiated, but were

A-19



heated on a graphite wafer in a 27.8°C/mm temperature gradient so that the particles were

exposed to a range of temperatures during each test.

The samples contained 3.3 wt % silver in the fuel kernel, about 100 times more silver than
expected during normal operation of medium-enriched UO, to 20% FIMA. This increased silver
concentration ensured detectability after heating while accounting for any silver loss from the fuel
kernel during the coating process. The heating conditions for the first set of silver-doped tests are
shown in Table A-2. Pearson et al. mounted the particles after heating and then polished them
to the midplane. X-ray analysis in either an SEM (scanning electron microscopy) or an EMP
(electron microprobe) identified several locations of silver interaction with the SiC in many of the
particles. A distribution of silver in the SiC coatings consistent with a diffusion process was not
reported. Additionally, the silver lay along the PyC-SiC interface on the cold side of the

particles.

Table A-2. Heating temperature ranges silver-doped fuel heating tests.

Wafer # Heat'in.g Temperature Ra'nge (°O) Time (h)
minimum maximum
1 1550 1900 25
2 1400 1750 260
3 1250 1500 3528

In further testing of silver interaction, Pearson et al. heated TRISO particles with 1.26 wt% silver
mixed in with the UO, fuel kernel. These tests were conducted at a maximum temperature of
1500°C with particles on graphite wafers heated in a 27.8°C/mm temperature gradient. No silver
penetration into the SiC layer could be observed during SEM examination. The authors did,
however, note occasional large nodules in the SiC layer where silver had completely replaced the
silicon carbide. If diffusion controlled silver transport in SiC, one would expect to observe silver
distributed uniformly around the particle and a silver concentration gradient through the SiC
layer. Pearson et al.'s observations continue to indicate that silver migration is not dominated by
diffusion, but rather is dominated by localized interactions where discrete pockets of phase-

separated silver are observed in the SiC coating.

Transmission electron microscopy after 2000 h of heating revealed no microstructural changes

either on the hot or cold side of the particles, no second-phase nodules, and no obvious grain
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boundary films. Particle silver inventories were not measured and no discussion of silver release
was included. It is not clear whether the silver was retained or if release accompanied the

findings.

Further work by the JAERI/ORNL collaboration examined particles that were deconsolidated
from irradiated fuel elements. The IMGA (Irradiated Microsphere Gamma Activity) system
measured the fission product inventory of the individual particles before and after heating. The
predominant gamma rays after irradiation were from 97, 1%Ru, **Cs, *'Cs, and "*Ce. Activity
ratios of mobile fission products, such as cesium, cerium, and silver, to chemically stable fission
products, such as zirconium and ruthenium, allowed comparisons between fuel particle
inventories while accounting for individual variations in fuel kernel size and burnup. During
accident condition testing (ACT) solid fission products released from the fuel particles were
collected on deposition cups, which were removed periodically and counted. Charcoal traps
connected to the flowing helium monitored the amount of *Kr release as a sign of through-

coating particle failure during heating.

ACT-1 heated 100 deconsolidated particles at 1600°C for 73.6 h. The test, initially planned for
1000 h, was stopped short due to the high number of particle failures and the contamination
caused by fission product release. Online gas monitoring of *Kr during heating indicated four
through-coating particle failures after 5 h, 28 h, 44 h, and 50 h at 1600°C. Based on the IMGA
results, five particles lost significant cesium during heating. A total of 22 particles lost part of
their OPyC layers. Three of the five particles that lost significant cesium also lost part of or had
hair line cracks in their OPyC layers. Only six of the 100 particles were counted for silver; two of
those six lost more silver than cesium. The fission product release curves evaluated from seven
measurements of the deposition cups during heating have similar shapes for both silver and
cesium indicating that silver and cesium were released within the same 5-20 h windows. Silver
and cesium fractional release curves as measured by accumulation on the deposition cups are
shown in Figures A-5a and b respectively. While suggesting that silver and cesium may have
been released at the same time, presumably from the same particles, the long gap between

deposition cup readings leaves uncertainty about the individual behavior of silver and cesium.
The goal of the following two tests, ACT-3 and ACT-4, was to measure silver diffusion through

intact SiC layers. Each test was limited to 25 particles to accommodate the long counting times,

8 h, to measure silver inventories. Minato et al. selected a compact with a lower burnup,

A-21



4.79+0.11% FIMA, for deconsolidation to provide more safety margin during heating and avoid
through-coating failures. Particle identities were maintained during heating so that fission
product inventories measured by IMGA could be compared before and after heating. The
fractional release curves for silver and cesium during ACT-3 and ACT-4 heating are shown in

Figure A-5 a and b, respectively.
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Figure A-5. Fractional release of silver is greater than cesium during accident condition testing.

The gas monitoring system detected no significant fission gas release indicating no through-
coating failures during ACT-3 heating for 270 h at 1800°C. However, IMGA counting detected
"considerable variation" in the retention of silver, cesium, and europium among the particles, as
shown in Figure A-6. It appears that there was much more silver release than cesium, but the
accuracy of the measurements and calculations is not known. Based on the total inventory
measurements of the 25 particles before and after heating, the particles lost an average of about

47% of their silver and about 7% of their cesium during ACT-3.

The 25 particles heated in ACT-4 at 1800°C for 222 h again exhibited "considerable variation" in

the retention of the fission products silver, cesium, and europium, as shown in Figure A-8. As
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with ACT-3, the 25 particles together released more silver than cesium, losing about 69% of their
silver and 16% of their cesium. Visual examination of the particles after heating revealed one
particle with completely fragmented coatings and an exposed fuel kernel (noted as a failed
particles in Figure A-8). The fractional release of cesium is, again, lower than the fractional
release of silver. This feature has been interpreted to mean that silver diffuses faster than cesium
through SiC. Although the pyrocarbon layers are generally not credited with retaining cesium,
they do slow cesium transport more than they slow silver transport contributing to the lower
observed releases. Again, the variation in fractional release among the 25 particles in each of the

ACT-3 and ACT-4 tests argues against diffusion as the controlling silver transport mechanism.
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Figure A-6. Individual particle fission product retention varies significantly during ACT-3
heating at 1700°C.
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Figure A-7. Individual particle fission product retention varies significantly during ACT-4
heating at 1800°C.

Ketterer and Bullock examined loose particles for silver and cesium release after irradiation in
capsule HRB-15B (Ketterer and Bullock 1981). During irradiation, the low-enriched fuel,
approximately 19.5% ***U, achieved a peak exposure of 6.6x10% n/m’ fast fluence and about
27% FIMA fissile burnup with nominal time average temperatures between 815°C and 915°C.
The TRISO-coated particles retained all of their fission products except for small quantities of
silver. Different fissile and fertile fuel types were tested. The TRISO-coated fissile fuels
included UO,, UC,, UCO, and two types of UO," fuels with either ZrC dispersed in the buffer or

a ZrC coating over the fuel kernel.

IMGA measurements of the particles after irradiation generally indicate complete retention of
7Cs, but "significant loss" of '"""Ag. Uncertainties for IMGA results are on the order of 9%-
15% for the *’Cs /'“Ru inventory ratio and 10%-16% for the ''""Ag/'®Ru ratio. The 0%-8%
B7Cs release indicated by IMGA measurements falls within the uncertainty of the measurement

and is, therefore, not sufficient evidence of cesium release during irradiation.
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There is some confusion about the meaning of the silver release measurements. IMGA results
and the '"""Ag/'®Ru ratio indicate that, on average, 27% of the silver inventory was released
during irradiation. Gamma-counting measurements on the empty graphite trays indicated only
2%-13% silver release. Even considering the uncertainties of both types of measurements, the
release values from IMGA on particle and gamma-counting of empty trays do not agree. While
this discrepancy was a source of concern for the authors, other work on silver migration in
graphite materials indicate that they do not retain silver. Although silver is expected to condense
on cold (significantly less than silver's melting temperature, 960°C) components in the system, it
should not be surprising that silver was not detected on the graphite trays. IMGA measurements
on particles after irradiation showed no cesium loss and unquantified silver release. However,
gamma-counting of empty trays detected **Cs, *’Cs, and '"""Ag. Of the trays with significant
autoradiograph patterns, two trays had silver but no cesium and two trays had cesium but no
silver. While gamma scans of empty particle trays suggest that the particles released 2%-13% of
their theoretical silver inventory, the uncertainty of approximately 13%-15.6% for *’Cs and

21.6%-23.3% for ''""Ag means that cesium and silver release cannot be confirmed.

The fuel temperatures were greater than the graphite tray temperatures. While the graphite tray
mean temperatures were approximately 840°C, the actual temperatures were greater than the
mean for a significant time during irradiation. Although even the mean fuel temperatures may
have been relatively low during irradiation, fuel temperatures exceeded the melting temperature
of silver, 960°C, for a significant portion of the irradiation. At these temperatures, any silver

escaping the fuel particles would be a vapor and would not likely condense on the graphite trays.

The SiC layers of the TRISO-coated UC, and UCO fuels contained some flaws and porosity that
may have degraded their performance. Short, lenticular flaws observed during metallography are
purported to be associated with areas of free silicon in the SiC layer. Porosity found in the UCO
particles was randomly dispersed in the silicon carbide and was observed both before and after

irradiation.

In another irradiation test, fission gas release measurements and gamma-ray analysis of fuel
particles and structural components provided means for Ketterer et al. to compare fuel
performance of different fuel kernel materials and the effect of replacing SiC with ZrC in the
TRISO coating. The irradiation at ORNL in capsule HRB-15A included fuel particles in fuel

rods, bonded trays, and unbonded particle trays. Fission gas release measurements during
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irradiation and end-of-life release-to-birth ratios indicated some fuel failure, about 2% average in-
service particle failure ( Ketterer et al. 1984). Fuel in capsule HRB-15A experienced burnup
between 20% and 29% FIMA and fast fluence between 3.3 n/m’ and 6.5x10* n/m®. Time-
averaged temperatures for the fuel rods and bonded and unbonded particle wafers all fell in the

1000°C-1100°C range.

Two batches of fuel with UC,50; s kernels were the least retentive of silver and experienced
severe SiC degradation by fission product (e.g. palladium) attack in 70% of those particles
observed with ceramography. Degradation of the SiC coating by palladium or interactions with
other fission products may provide pathways for silver release. Two batches of ZrC-TRISO (ZrC
instead of SiC layer) exhibited better resistance to fission product attack, but the batch with UC,
fuel still had poor silver retention. It is not yet clear whether ZrC retains silver better than SiC

does.

Gamma counting of particles, particle trays, the graphite sleeve, and the stainless steel primary
tube all provided data on fuel performance during the irradiation. The empty particle trays
contained no silver after irradiation, but cesium, cerium, and europium were detected on some of
the trays. Cobalt, cesium, silver, and europium were found on the graphite sleeve surrounding the
fuel rods and trays with 60% of the silver detected occurring at the elevations of the UC( 50 5
fuels. Silver was also leached off the stainless steel primary containment tube indicating that
silver passed through the graphite sleeve while the other fission products remained inside the

sleeve.

Deconsolidation of the fuels rods provided fuel particles for gamma counting after irradiation.
Analysis of the electrolytic solution after deconsolidation indicated a significant number of failed
particles per rod. By measuring the amount of uranium contained in the solution after
deconsolidation and comparing that to the calculated inventory per particle, Ketterer et al.
calculated the number of failed particles per rod. Gamma analysis of the Bics, PCs, 11O““Ag,
%zr, and '“Ru inventories per particle and the ratios of mobile (cesium and silver) to stable
(zirconium and ruthenium) fission products provided insight into cesium and silver and, in some

cases, cerium and europium release during irradiation.
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Table A-3. Silver retention is less than cesium retention in HRB-15A fuels.

Fuel Coatin Number of | Failure | Silver Retention (%) | Cesium Retention (%)
g Particles Fraction Mean Range Mean Range
U0, TRISO 467 6.5x107 48 26-71 94 90-99
U0, TRISO 201 2.5x107 44 0-69 91 75-95
Uo,” ZrcT ﬁllil?ffer 365 | 1.5x10%| 56 35-80 9% 69-100
UC, | ZrC-TRISO 342 6x1072 47 0-66 90 0-97
UG, TRISO 184 1.8x1072 55 40-73 92 89-96
UCco TRISO 345 3x1072 15 0-72 91 24-98

As shown in Table A-3, silver is generally released more readily from all fuels from the HRB-
15A irradiation than cesium. In the UO, TRISO fuels, high silver release was observed in some
of the same particles with high cesium retention. The UC, fuel with ZrC-TRISO coating
experienced poor silver retention with the best particle only retaining 62% of its silver. Release
values, however, for both silver and cesium vary significantly within a single batch and single
fuel rod. Ketterer et al. suggest that variations in the microstructures of the barrier layers (SiC
and ZrC) within and between batches are responsible for the variations in fission product release.
Differences in individual SiC grain structures, however, are not sufficient to account for the

scatter in the release values.

Cesium releases were significantly greater than expected and Ketterer et al. suggest this is due to
particles with failed SiC but intact OPyC layers. According to Ketterer et al., with lower average
fuel temperatures during expected HTGR operation, cesium diffusion through OPyC layers would
be hindered and holdup in the core graphite would limit cesium release even with failed SiC

layers.

Particles with failed SiC coatings and intact OPyC coatings would release silver and cesium while
retaining the noble fission gases krypton and xenon. An intact OPyC layer would retard cesium
release, explaining lower observed releases of cesium relative to silver. Although path length
variations due to individual SiC microstructures are insufficient to explain the range of release
values, failed SiC layers in some of the particles does account for observations of silver release
from some particles (the ones with failed SiC coatings) with silver retention in others (those with

intact SiC coatings).
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lon Implantation

In addition to studying total silver release from fuel particles, Nabielek et al. examined the
migration of silver implanted in a silicon carbide disk. Using SiC chemically vapor deposited on
a plane graphite disk, silver was implanted with a peak concentration equivalent to 2x10° mole
1 Ag per mole SiC. After heating the sample at 1180°C for only 30 minutes, the authors reported

that the "mobility of silver was too small to be detectable."

The silicon carbide contained some pores and had a density of 3.18 g/cm’, within the range of
typically characterized SiC and fairly close to the theoretical SiC density of 3.21 g/cm’. The
implanted silver concentration was in the range typical of in-pile concentrations reached at 12%
FIMA of 2x10™ to 4x10™ mole '”Ag per mole SiC. The authors hypothesize that the silver was
trapped inside the SiC grains hence the lack of migration is attributable to the extremely low
silver diffusion rate within SiC grains, not a measure of silver grain boundary diffusion. The ion
implantation used in this experiment resulted in a shallow silver concentration profile with the
peak silver concentration occurring approximately 80 nm, or 0.08 pm, below the SiC surface.
Typical SiC grain dimensions on the order of 0.5-1 pm are common, and grain sizes are often
larger. The implanted silver, therefore, was probably contained within the first row of grains in
the SiC plate. The width of the implanted area, however, was most certainly larger than a single
SiC grain, probably on the order of millimeters. The silver implantation beam most likely
spanned many SiC grains and their associated grain boundaries. The silver ions were, therefore,
not completely contained within SiC grains and those on the grain boundaries should have been

free to diffuse, but no evidence of silver transport was observed.

From the small movement of silver atoms in the ion implantation experiment Nabielek et al.

derived an upper limit for the diffusion coefficient of silver in silicon carbide at 1180°C as:

Dyic(1180°C) <<1071% 2 (A-18)

This value is much lower, approximately 3 orders of magnitude lower, than the other diffusion
coefficients for silver in silicon carbide reported in the literature. Compared to other experiments
reported in the literature, the heat treatment used here, 30 min at 1180°C, is quite short and at a

much lower temperature. Although estimates for silver migration in the ion implantation sample
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using average diffusion coefficient values in the literature predicted measurable silver movement,
given sufficient accuracy of the silver concentration measurement technique, the duration and

temperature of the heat treatment may not have been enough to generate silver transport.

Discussion

The lack of cesium release during various irradiation and heating tests argues that most of the fuel
particles tested were intact. Thus, it seems reasonable that, in order to escape, silver must have
diffused through intact silicon carbide. This view of effective silver release has allowed many
authors to compare results from different types of fuels and to categorize their results with

diffusion coefficients, useful for estimating total silver release from future operating cores.

Although the reported silver diffusion coefficients agree with each other within about 2 orders of
magnitude, the specific path of grain boundary diffusion has been assumed from a comparison of
activation energies and not from direct observation. A few observations among the diffusion
coefficient experiments and simple calculations aim to look at the process of silver migration in

silicon carbide from a different perspective.

Scatter in the Data

Amian and Stover and other authors propose that the scatter observed in calculated silver
diffusion coefficients stems from variations in the silicon carbide microstructure. If silver
diffuses along silicon carbide grain boundaries, as commonly suggested, then different
microstructures in different particles would produce different total path lengths through each
silicon carbide layer. While this explanation makes intuitive sense, it does not represent the

available data well.

Given a specific heat treatment duration and silver concentration at the inner SiC surface, the
amount of silver released through the SiC coating can be calculated from the analytical solution
through a spherical shell, shown in Equation A-19. Equating the mass release from two different
scenarios and allowing the overall thickness to vary to represent the total silver path length along
SiC grain boundaries, one can calculate the effective change in SiC thickness to match a change
in the diffusion coefficient. The maximum and minimum diffusion coefficient values at selected

temperatures were taken from the literature values shown in Figure A-4.
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Dt 1 2 =(-1) Dn® 7?1
Qr=47rab(b—a)C1- W—g—?'nEI nz exp[— (b_a)z :|] (A-19)

where O, = mass released (g),
a = inner radius of spherical shell (m),
b = outer radius of spherical shell (m),
C, = source concentration of silver at r = a (g/m’),
D = diffusion coefficient of silver in SiC (m?/s), and
t = duration of heat treatment (s).

In previous work, authors measured silver release from fuel particles and then calculated effective
diffusion coefficients using the duration of the heat treatment and the dimensions of the SiC
coating. In either analytical or numerical solutions used to determine the diffusion coefficients,
the silver path length is assumed to be, simply, the thickness of the SiC coating. But, if silver
travels along a tortuous path through the SiC coating before it escapes, the path length would be
longer than the SiC coating thickness and the diffusion coefficient required to "push" the same
amount of silver through the coating would have to be greater. If, therefore, the lowest diffusion
coefficients are associated with the shortest diffusion paths (i.e., a single SiC grain boundary
extending radially from the inner surface to the outer surface of the SiC coating), then one can
calculate the total effective path length required to result in a higher diffusion coefficient for the

same mass loss.

Equating the silver release using the maximum diffusion coefficient value at a given temperature
with the silver release using the minimum diffusion coefficient at the same temperature, one can
calculate the difference in effective path length. The values for the effective silver path length
required to result in the reported range of diffusion coefficient are listed in Table A-4. The range
in values, however, is greater than that expected based on typical SiC grain structures. As
discussed above, one SiC grain structure extreme is the case of long, columnar grains with single
grains extending through the entire SiC coating. At the other end of the spectrum is a SiC coating
with small, equiaxed grains, on the order of 0.5 pm per side, for example. If for every grain-
width a silver atom moves in the radial direction it also moves one grain-width in the tangential
direction, then the effective path length traveled by the silver atom is twice the SiC coating
thickness. For the diffusion coefficient values at 1200°C and 1500°C, where the values differ by
more than 1 order of magnitude, the effective path length changes by a factor of roughly 8-10.

Although silver would be expected to follow a tortuous path as a result of grain boundary
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diffusion, a total path length greater than twice the SiC thickness is not likely. From this
assessment of the variation in reported diffusion coefficients, the argument that silver diffusion
varies because of the individual SiC microstructures does not reflect the actual data. Another
mechanism, therefore, must govern silver transport through silicon carbide coatings resulting in
the large variations observed in silver release, both in individual particle measurements and in

large batch testing.

Table A-4. The calculated path lengths necessary to explain the range of diffusion coefficients
is larger than reasonable tortuous paths through SiC layers.

Thickness

Temperature Lower D Agsurned Upper D Cal.culated Ratio
5 Thickness ) Thickness
(°O) (m?/s) (um) (m?/s) ( (Calculated:

Hm pm) Assumed)
1000 1.0E-18 35 1.7E-17 105 3.0
1200 9.8E-18 35 1.5E-15 470 13.4
1500 1.5E-16 35 4.3E-15 290 8.3

Silicon Carbide Diffusion vs. Particle Failure

Most of the silver diffusion coefficients reported in the literature were derived from batch testing
of a population of fuel particles. In general, these diffusion coefficients were calculated assuming
the collected silver release was due equally to all particles in the batch. But what if the silver
release was not uniform? If just a few particles in a batch had a short-circuit diffusion path or
connected porosity in the silicon carbide layer, a large portion of that particle's silver inventory
could escape. It is possible that almost total release of silver from a few particles in a batch of
fuel particles with almost complete retention in the rest would produce the same silver deposition

on a cold plate during heating as those previously assumed due to diffusion from the entire batch.

Take, for example, the data reported by Amian and Stover for a number of post-irradiation
anneals. The authors report the diffusion coefficient calculated from release measurements
during post-irradiation anneals. The geometry of the fuel and anneal conditions are given, along
with the calculated values of fractional release. The number of fuel particles per element tested is

not included, but the following demonstration remains instructive.

If the procedure applied to calculate the diffusion coefficients from release measurements is

reversed, an estimate of the release detected and silver mass per particle (element) can be
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determined. The following analysis assumes that there are 250 particles in each element tested.
Using the reported diffusion coefficient for each anneal (D) and the anneal conditions (7, ¢), the
amount of silver released from each element (Q) was calculated using the analytical solution for
diffusive release from a thin spherical shell. The total amount of silver released (Qyor) from each
element was also calculated (using the original assumption that the release was evenly attributed
to all of the particles in the element). The total amount of silver in each particle at the beginning
of the heat treatment (M,,) was calculated given the fractional release values listed by Amian and
Stover. The results of this analysis are shown in Table A-5. A comparison of the calculated
amount of silver per particle to the calculated amount of silver released from the element shows
that it is feasible that in some elements the release is due to a nearly complete loss of silver from a

few particles and almost complete retention in the rest.

Table A-5. Equivalent number of failed particles given the fractional release for the batch and
assuming 250 particles per batch.

Temp. | Time D FR Qg My (8) Quotal (g) | Failed

(K) (h) (m%/s) (particle) (particle) (element) SiC
1273 | 2340 | 4.8E-18 | 4.0E-03 | 2.35E-09 5.87E-07 | 5.87E-07 1.00
1273 700 | 9.6E-18 | 4.1E-03 | 9.53E-12 2.32E-09 | 2.38E-09 1.03
1273 | 1000 | 1.0E-18 | 7.0E-04 | 3.34E-21 4.77E-18 | 8.34E-19 0.18
1373 543 | 1.4E-16 | 5.0E-02 | 1.08E-05 2.16E-04 | 2.70E-03 12.50
1373 294 | 1.1E-16 | 5.3E-03 | 9.73E-07 1.84E-04 | 2.43E-04 1.33
1473 162 | 4.5E-16 | 3.0E-02 | 9.84E-06 3.28E-04 | 2.46E-03 7.50
1473 240 | 5.6E-17 | 2.4E-03 | 9.67E-09 4.03E-06 | 2.42E-06 0.60
1673 40 | 7.4E-16 | 5.3E-03 | 6.94E-07 1.31E-04 | 1.74E-04 1.33
1673 75 | 6.2E-16 | 9.8E-03 | 3.19E-06 3.25E-04 | 7.97E-04 245
1673 30 | 2.0E-15] 1.1E-02 | 6.27E-06 5.70E-04 | 1.57E-03 2.75
1673 45 | 1.1E-15 | 5.0E-03 | 3.80E-06 7.60E-04 | 9.50E-04 1.25
1773 30 | 9.0E-16 | 4.1E-03 | 4.77E-07 1.16E-04 | 1.19E-04 1.03
1773 225 | 1.5E-15] 1.5E-01 | 1.06E-04 7.09E-04 | 2.66E-02 | 37.50
1773 183 | 2.8E-15] 2.9E-01 | 1.72E-04 5.92E-04 | 4.29E-02 | 72.50

* assuming 250 particles per fuel element

Rearranging the numbers somewhat, for a batch of 250 particles, the release of 30% of the silver
inventory of just four particles would produce the same results as 0.5% release from each particle,
the value attributed to diffusion by Amian and Stover. This calculation, once again, suggests that
silver release could result from a short-circuit path or silicon carbide failure in a few particles per

batch rather than diffusion.
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Other Possible Silver Migration Pathways

With a melting temperature of 960°C, silver exists as a vapor when released from fuel particles.
Nabielek et al. cite previous work when they report that silver is "trapped, nearly quantitatively"
when particle surface temperatures are below 1000°C. For all of the results reported in the
literature, the fuel surface temperatures exceeded, at least for some portion of the test, 1000°C, so
the retention of silver at low temperature cannot be confirmed. This does, however, leave open
the possibility that paths allowing the transport of a vapor through the silicon carbide layer may

play a role in silver release.

A number of authors have advised some caution relative to the silver diffusion coefficients.
Nabielek et al. conclude that migrating fission products will follow grain boundaries in poly-
crystalline SiC "through disorganized material via traces of free silicon". If free silicon is present
in the silicon carbide layer, Nabielek et al. suggested that it will be stored at the grain boundaries
and will aid in silver migration. Additionally, other authors have suggested looking for short-
circuit diffusion paths as they may provide significant contributions to enhanced fission product

release.

Schenk and Nabielek report that an intermediate stage of silicon carbide failure, beginning around
1600°C, is characterized by non-uniform porosity and cracks. These features could certainly lead
to fast silver release from silicon carbide, appearing as diffusion through intact material as long as
the pyrocarbon layers are undamaged and still retaining the fission gases and some of the cesium.
Nabielek et al. also suggest a deterioration of silicon carbide occurring during operation when
fuel temperatures are above 1200°C leading to increased silver release at higher temperatures.
Although the assessment of the quality of the fuel used by Nabielek et al. has been challenged in
the literature, it is important to note that other pathways and mechanisms resulting in silver

release have been suggested and may explain some of the variation in the data.

Although pressure vessel failure (failure of all three structural layers) has been a concern for fuel
performance, silicon carbide failure next to intact pyrocarbon layers can occur. During HRB-22
post-irradiation examination, Minato et al. found a partial crack in a single SiC layer. Cracks like
this one do not extend completely through the SiC coating so they are not detected by standard
burn/leach methods used to detect coating failures. The authors suggest that the crack formed
either from mechanical shocks after SiC deposition or during the compact fabrication process.

Pathways like this one would provide paths for silver vapor release.
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Other Fission Product Behavior

The retention and release of other fission products, namely the noble gases krypton and xenon,
and other metallics, primarily cesium, plays an important role in judging the performance of the
fuel particles. Intact pyrocarbon layers retain the noble fission gases. As long as either the inner
or outer pyrocarbon layer is undamaged, fission gas release will not be observed and this fact is

used to categorize fuel as, generally, intact or failed.

One of the initial drivers for adding a silicon carbide layer to coated particle fuels was to improve
cesium retention. Cesium escaped from the original pyrocarbon coatings of the BISO particles,
but the degree to which pyrocarbon or graphite materials can retain or retard cesium migration is

not completely clear.

Brown and Faircloth state that cesium seems to be well retained by the particle coatings,
"principally in the inner pyrocarbon layer". Amian and Stdver also had a similar finding stating
the "cesium is effectively retained in the HTI-PyC coatings" and that there was no distinct
improvement for cesium retention in SiC relative to PyC. Schenk and Nabielek reported that
cesium was found mainly in the buffer layer and the matrix graphite around the fuel particles
provided enough retention to prevent rapid cesium release from the fuel element. Ketterer et al.
found cesium throughout the buffer layer in the particles from the HRB-15B irradiation,
indicating some solubility or adsorption of cesium in the low-density graphite buffer and also

stated that cesium was retained by the OPyC layer.

These findings suggest that both the pyrocarbon layers and the low-density buffer and matrix
materials may provide some retention for cesium, possibly through adsorption in the low-density
materials. If cesium is retained, at least somewhat, by the PyC layers or the other graphite
materials, then failure of a silicon carbide layer would not automatically result in cesium release.
In this way silver release from particles with intact PyC layers and failed SiC layers could be

observed while the cesium was still retained.

Conclusions
Although the Arrhenius form of the diffusion equation appears to cover the observed temperature

trends regarding silver release from coated fuel particles, other observations suggest that silver
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release may depend on mechanisms other than classical diffusion. Nablielek et al. calculate silver
diffusion coefficients based on release data, but also caution that the shapes of some of the release
curves are not consistent with diffusion. They further propose that silver release may be due to a

degradation of the silicon carbide with irradiation and heating.

Amian and Stover attribute the greater than one order of magnitude scatter in their data to
variation in the specific microstructure in each silicon carbide layer. However, as seen in section
0, variations in microstructure alone cannot account for the large range of diffusion coefficients.
If silver release from particles is driven by SiC integrity rather than by grain boundary diffusion
along specific grain paths, large variations in release per particle and per batch would still be

observed with corresponding variations in the calculated effective diffusion coefficient.

Variations in silver release would be expected given a grain boundary diffusion mechanism from
individual particles based on specific microstructures and irradiation conditions. However, the
large variations observed by Amian and Stover, Bullock, and Ketterer et al. are greater than can
be explained by SiC microstructure and irradiation conditions and do not appear characteristic of
a diffusion pathway. When testing particles from a single fabrication batch with nearly identical
dimension and irradiation parameters, release due to diffusion should not vary by orders of
magnitude. Diffusion does not explain why some particles in Bullock's study released 100% of
their silver while others from the same batch in the same test retained all of their silver. These

observations suggest that mechanisms other than diffusion are involved with silver release.

The assumption that silver release is governed by grain boundary diffusion attempts to explain a
range of data whose span is larger than expected based on typical grain boundary path variations.
Without measuring silver concentration profiles or observing direct evidence of diffusion, one
must still consider other transport mechanisms. Various authors have expressed doubts about the
specific silver migration mechanism and have offered some suggestions of alternative

possibilities contributing to silver release, but these paths have not yet been followed.

There is ample uncertainty in the current data to suggest that silver may not only diffuse through
silicon carbide, but may escape through failed silicon carbide layers or other defects in the
coating. If this is the case, identifying those flawed particles and removing them from operation
would decrease silver release. Additional work to identify the specific silver transport

mechanism is important for developing methods to reduce or mitigate silver release.
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APPENDIX B (MIT):
Diffusion Coupled Data

The following tables list the heat treatment and fabrication data for the MIT diffusion couple
experiments discussed in Section 3. Two different fixtures, shown in Figure B-1 and noted as

"clamp" and "plate" in the following tables, were used to hold the diffusion couples during SiC

coating.

Figure B-1. Two types of fixtures were used during SiC coating: @) clamp, b) graphite plate.
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SIC-1

Table B-1. SiC-1 Diffusion Couple Annealing Data.

Anneal
Temp | Time Start End
1D (°C) (hrs) Date Date Notes
1500 24 | 7/14/00 | 7/15/00
9 1400 43.8] 7/19/00 | 7/21/00
10 1050 1000 | 7/12/01 | 8/26/01
11 1700 50 | 11/15/01 | 11/17/01
12 as-fabricated, not heated

13 1400 276 | 7/17/01 | 7/29/01

14 1500 300 | 11/15/01 | 11/30/01

15 1500 2 | 8/31/01 | 8/31/01 bare graphite spot

16

17 1500 400 | 10/23/01 | 11/6/01 control sample, sectioned before heat
19 missing button

20 1500 120 | 1/17/01 | 1/22/01

21 1400 240 | 1/24/01 2/3/01

22 missing button

23 1400 276 | 7/17/01 | 7/29/01

24 1050 1000 | 7/12/01 || 8/26/01

28_1| 1200 643 | 7/30/01 | 8/26/01 Ist heat treatment
28 2| 1200 1117 | 12/11/01 | 1/27/02 2nd heat treatment

28 1200 1760 cumulative
29 1| 1500 24 1st heat treatment
29 2| 1200 400 | 2/20/01 || 3/12/01 2nd heat treatment
30_1] 1200 643 | 7/30/01 | 8/26/01 Ist heat treatment
30_2] 1200 1117 || 12/11/01 | 1/27/02 2nd heat treatment

30 1200 1760 cumulative

32 1500 100 | 7/12/01 | 7/17/01

33 1500 100 | 7/12/01 | 7/17/01

56 1500 200 | 2/28/02 | 3/8/02 control sample, no silver

57 1500 200 || 2/28/02 | 3/8/02

58

59

60

61

62

63 1600 550 | 2/1/02 | 2/24/02

64




Table B-2. SiC-1 Diffusion Couple Mass Loss and Leak Testing Data.

Mass Loss Leak Testing
Initial Mass Mass
Ag before after dM dM / dM / pre post
Mass anneal anneal Total initial total (atm.cc (atm.cc
ID (gm) (gm) (gm) (gm) Ag mass| mass /sec) /sec)
0.1366 | 1.7734 n/a
9 | 0.1297 | 1.7511 n/a
10 | 0.1378 | 1.7728 1.7409 0.0319 0.2315 | 0.0180 3.0E-02
11 | 0.1441 1.7672 1.6826 0.0846 0.5871 | 0.0479
12 | 0.1405

13 | 0.1358 | 1.7634 1.7555 0.0079 0.0582 | 0.0045

14 | 0.1219 | 1.7615 1.6652 0.0963 0.7900 | 0.0547

15 | 0.1249 | 1.7401 1.7340 0.0061 0.0488 | 0.0035 1.0E-03
16 | 0.1289 2.5E-02

17 | 0.1090 | 1.3471 1.3400 0.0071 0.0651 | 0.0053

19 | 0.1294 8.0E-03

20 | 0.1383 | 1.6834 1.6569 0.0265 0.1916 | 0.0157

21 | 0.1615 | 1.6989 1.6656 0.0333 0.2062 | 0.0196

22 | 0.1700 4.0E-02

23 | 0.1581 1.7213 1.7200 0.0013 0.0082 | 0.0008

24 | 0.1750 | 1.7466 1.7166 0.0300 0.1714 | 0.0172 2.0E-06
28_1] 0.2363 | 1.8527 1.8460 0.0067 0.0284 | 0.0036
28_2] 0.2363 | 1.8497 1.8444 0.0053 0.0224 | 0.0029 5.0E-04

28 | 0.2363 1.8527 1.8444 0.0083 0.0351 | 0.0045

29 1] 0.2363 n/a

29 2] 0.2038 | 1.8318 n/a

30_1] 0.2029 | 1.8062 1.7996 0.0066 0.0325 | 0.0037

30_2] 0.2029 | 1.8005 | 1.7987 0.0018 | 0.0089 | 0.0010 5.0E-06
30 | 0.2029 | 1.8062 | 1.7987 0.0075 | 0.0370 | 0.0042

32 | 02737 | 19797 | 1.9781 0.0016 | 0.0058 | 0.0008

33 | 02497 | 1.9973 | 1.9959 0.0014 | 0.0056 | 0.0007

56 | 0.0000 | 1.6924 | 1.6864 0.0060 0.0035 | 5.0B-07 | 2.0E-04
57 | 03029 | 1.9801 | 1.7888 0.1913 | 0.6316 | 0.0966 | 5.0E-07 | 8.0E-04
58 | 03009 5.0E-07

59 | 0.2751 5.0B-07

60 | 0.2859 5.5B-07

61 | 0.2693 5.0B-07

62 | 0.2683 1.5E-05

63 | 03256 | 1.9622 | 1.6325 0.3297 | 1.0126 | 0.1680 2.5E-02
64 | 03115 5.0B-07




Table B-3. SiC-1 Diffusion Couple SiC Coating Data.

SiC Coating

SiC Total SiC SiC
CVD Coating Mass Mass thick

1D fixture Date (gm) (gm) (um)
clamp 3/00 1.7734 0.2377 64.5

9 clamp 3/00 1.7511 0.2323 63.1
10 clamp 3/00 1.7730 0.2399 65.1
11 clamp 3/00 1.7676 0.2246 61.0
12 clamp 3/00 1.7270 0.1929 52.4
13 clamp 3/00 1.7636 0.2176 59.1
14 clamp 5/00 1.7606 0.2323 63.1
15 clamp 5/00 1.7599 0.2357 64.0
16 clamp 5/00 1.7725 0.2368 64.3
17 clamp 10/00 1.6337 0.1275 34.7
19 clamp 10/00 1.6500 0.1281 34.9
20 clamp 10/00 1.6834 0.1402 38.2
21 clamp 10/00 1.7014 0.1405 38.2
22 clamp 10/00 1.6856 0.1203 32.8
23 plate 10/00 1.7211 0.1686 45.8
24 plate 10/00 1.7463 0.1824 49.6
28 _1 plate 2/01 1.8525 0.2038 554
28 2 plate 2/01 1.8525 0.2038 554
28 plate 2/01 1.8525 0.2038 55.4
29_1 plate 2/01 1.8318 0.2132 57.9
29_2 plate 2/01 1.8318 0.2132 57.9
30_1 plate 2/01 1.8060 0.1978 53.7
30_2 plate 2/01 1.8060 0.1978 53.7
30 plate 2/01 1.806 0.1978 53.7
32 plate 5/01 1.9972 0.3061 82.9
33 plate 5/01 1.9796 0.3089 83.7
56 plate 11/01 1.6922 0.2750 74.6
57 plate 11/01 1.9800 0.2701 73.2
58 plate 11/01 1.9574 0.2519 68.3
59 plate 11/01 1.9040 0.2206 59.9
60 plate 11/01 1.9034 0.2037 55.3
61 plate 11/01 1.8948 0.2114 574
62 plate 12/01 1.8974 0.2208 60.0
63 plate 12/01 1.9602 0.2280 61.9
64 plate 12/01 1.9701 0.2383 64.7




Table B-4. SiC-1 Diffusion Couple Fabrication Data.

Sample Fabrication / Silver Data

Silver Shell Male M M+ Ag Female | Female | F+ Ag | F Ag
Coating | Silver | Mass Mass +Ag | Ag+F | Mass Mass Mass Mass Mass
1D Date Source | (gm) (gm) (gm) (gm) (gm) (gm) (gm) (gm) (gm)
2/1/00 sputter | 1.3604 | 0.7091 | 0.7737 | 1.4970 0.6513 || 0.7233 | 0.0720
9 2/1/00 sputter | 1.3504 | 0.7095 || 0.7758 | 1.4801 0.6409 | 0.7043 | 0.0634
10 2/2/00 sputter | 1.3568 | 0.7147 | 0.7852 | 1.4944 0.6421 | 0.7094 | 0.0673
11 2/2/00 sputter | 1.3603 | 0.7091 || 0.7813 | 1.5043 0.6512 | 0.7231 | 0.0719
12 2/2/00 sputter | 1.3550 | 0.7073 | 0.7788 | 1.4954 0.6477 | 0.7167 | 0.0690
13 2/2/00 sputter | 1.3715 | 0.7114 || 0.7841 | 1.5073 0.6601 | 0.7232 | 0.0631
14 | 3/23/00 | sputter | 1.3677 | 0.7107 | 0.7724 | 1.4896 0.6571 | 0.7173 | 0.0602
15 3/23/00 | sputter | 1.3607 | 0.7085 | 0.7688 | 1.4855 0.6522 | 0.7168 | 0.0646
16 3/23/00 | sputter | 1.3680 | 0.7121 | 0.7788 | 1.4970 0.6560 | 0.7182 | 0.0622
17 3/23/00 | sputter | 1.3584 | 0.7034 | 0.7679 | 1.4675 0.6551 || 0.6996 | 0.0445
19 3/23/00 | sputter | 1.3537 | 0.7137 | 0.7824 | 1.4832 0.6401 | 0.7008 | 0.0607
20 3/23/00 | sputter | 1.3665 | 0.7131 | 0.7837 | 1.5045 0.6533 | 0.7210 | 0.0677
21 5/3/00 sputter | 1.3606 | 0.7073 | 0.7929 | 1.5222 0.6534 | 0.7293 | 0.0759
22 5/3/00 sputter | 1.3566 | 0.7036 | 0.7856 | 1.5266 0.6531 | 0.7411 | 0.0880
23 5/3/00 sputter | 1.3558 | 0.7160 | 0.7966 | 1.5138 0.6398 | 0.7173 | 0.0775
24 5/3/00 sputter | 1.3501 | 0.7110 | 0.7997 | 1.5252 0.6392 | 0.7255 | 0.0863
28 1] 2/7/01 powder | 1.4125 | 0.7292 | 0.9655 | 1.6487 | 0.2363 | 0.6832
28 2| 2/7/01 powder | 1.4125 | 0.7292 || 0.9655 | 1.6487 | 0.2363 | 0.6832
28 2/7/01 powder | 1.4125 | 0.7292 || 0.9655 | 1.6487 | 0.2363 | 0.6832
29 1) 2/7/01 powder | 1.4148 | 0.7219 || 0.9257 | 1.6186 | 0.2038 | 0.6929
29 2| 2/7/01 powder | 1.4148 | 0.7219 | 0.9257 | 1.6186 | 0.2038 | 0.6929
30_1| 2/7/01 powder | 1.4054 | 0.7238 | 0.9267 | 1.6082 | 0.2029 | 0.6815
30_2| 2/7/01 powder | 1.4054 | 0.7238 || 0.9267 | 1.6082 | 0.2029 | 0.6815
30 2/7/01 powder | 1.4054 | 0.7238 || 0.9267 | 1.6082 | 0.2029 | 0.6815
32 3/16/01 | powder | 1.4166 | 0.7248 | 0.9985 | 1.6911 | 0.2737 | 0.6926
33 3/16/01 | powder | 1.4210 | 0.7280 | 0.9777 | 1.6707 | 0.2497 | 0.6930
56 | 11/13/01 | powder 0.7257 1.4172 0.6915
57 | 11/13/01 | powder 0.7221 | 1.0250 | 1.7099 | 0.3029 | 0.6849
58 | 11/13/01 | powder 0.7241 | 1.0250 | 1.7055 | 0.3009 || 0.6805
59 | 11/13/01 | powder 0.7238 | 0.9989 | 1.6834 | 0.2751 | 0.6845
60 | 11/13/01 | powder 0.7206 | 1.0065 | 1.6997 | 0.2859 | 0.6932
61 | 11/13/01 | powder 0.7313 | 1.0006 | 1.6834 | 0.2693 | 0.6828
62 | 11/15/01 | powder 0.7263 | 0.9946 | 1.6766 | 0.2683 | 0.682
63 | 11/15/01 | powder 0.7271 || 1.0527 | 1.7322 | 0.3256 | 0.6795
64 | 11/15/01 | powder 0.7281 || 1.0396 | 1.7318 | 0.3115 | 0.6922




SIC-2

Table B-5. SiC-2 Diffusion Couple Annealing Data.

Anneal
Temp | Time Start End
ID (°O) (hr) Date Date Furnace Notes
Ag34 no silver
Ag35 no silver
Ag37 1500 80 9/14/01 | 9/17/01 W4 plate
Ag38 1400 | 224 9/14/01 | 9/23/01 WS5 plate
Ag39 1500 | 400 10/23/01 | 11/6/01 WS plate
Agd0 1500 140 10/12/01 | 10/18/01 W4 plate
Ag50 free Si in SiC
Ag51 free Si in SiC
IAg52 free Si in SiC
Ag53 1600 | 550 2/1/02 2/25/02 WS plate
Ag54
Ag55

Table B-6. SiC-2 Diffusion Couple Mass Loss and Leak Testing Data.

Mass Loss Leak Testing
Mass
before |Mass after| pre
Initial Ag anneal anneal | dM Total | dM /initial | dM / total (atm.cc post (atm.cc
1D Mass (gm) (gm) (gm) (gm) Ag mass mass /sec) /sec)
Ag34 0.0000 5.0E-07
Ag35 0.0000
Ag37 0.2530 1.8084 1.7974 0.0110 0.0435 0.0061 7.0E-04
Ag38 0.2545 1.8190 1.8052 0.0138 0.0542 0.0076 2.0E-03
Ag39 0.2525 1.8092 1.6732 0.1360 0.5386 0.0752
Ag40 0.2530 1.9577 1.7297 0.2280 0.9012 0.1165
Ag50 0.2863
Ag5sl 0.2852
Ag52 0.2836
Ag53 0.2600 1.9339 1.6330 0.3009 1.1573 0.1556 9.0E-04
Ag54 0.2705 3.0E-02
Ag55 0.3300 8.0E-04




Table B-7. SiC-2 Diffusion Couple SiC Coating Data.

SiC Coating

G+ Ag

+ SiC SiC SiC

SiC Coating Mass Mass thick

ID SiC Fixture Date (gm) (gm) (um)
Ag34 plate 7/01 1.6065 0.2044 55.5
Ag35 plate 7/01 1.6028 0.1927 524
Ag37 plate 8/01 1.8084 0.1448 39.4
Ag38 plate 8/01 1.8190 0.1541 41.9
Ag39 plate 8/01 1.8092 0.1466 39.9
Ag40 plate 9/01 1.9579 0.2929 79.4
Ag50 plate 10/01 1.8321 0.1308 35.6
Ag51 plate 10/01 1.8188 0.1194 32.5
Ag52 plate 10/01 1.8570 0.1703 46.3
Ag53 plate 11/01 1.9343 0.2663 72.2
Ag54 plate 11/01 1.8859 0.2019 54.9
Ag55 plate 11/01 1.8806 0.1329 36.2

Table B-8. SiC-2 Diffusion Couple Fabrication Data.

Sample Fabrication / Silver Data
M+
Shell Male Ag M+ Female
Silver Silver Mass Mass Mass Ag + Ag Mass
ID Source Date (gm) (gm) (gm) F (gm) | Mass (gm) (gm)
Ag34 none 1.4021
Ag35 none 1.4101
Ag37 powder 7/24/01 1.4107 | 0.7202 | 0.9732 1.6636 0.2530 0.6904
Ag38 powder 7/24/01 1.4106 | 0.7299 | 0.9844 | 1.6649 0.2545 0.6805
Ag39 powder 7/24/01 1.4103 | 0.7227 | 0.9752 1.6626 0.2525 0.6874
Ag40 powder 7/24/01 1.4122 | 0.7214 | 0.9744 1.6650 0.2530 0.6906
Ag50 powder 9/18/01 1.4154 | 0.7232 | 1.0095 1.7013 0.2863 0.6918
Ag5l powder 9/18/01 1.4144 ] 0.7295 | 1.0147 1.6994 0.2852 0.6847
Ag52 powder 9/18/01 1.4035 | 0.7290 | 1.0126 | 1.6867 0.2836 0.6741
Ag53 powder 10/23/01 | 1.4081 | 0.7190 | 0.9790 1.6680 0.2600 0.6890
Ag54 powder 10/23/01 1.4136 | 0.7212 | 0.9917 1.6840 0.2705 0.6923
Ag55 powder 10/23/01 | 1.4177 | 0.7362 | 1.0662 1.7477 0.3300 0.6815




SIC-3

Table B-9. SiC-3 Diffusion Couple Annealing, Mass Loss, and Leak Testing Data.
Anneal Mass Loss Leak Testing |
Initial | Mass Mass
Ag before after dM dM / pre post
Temp | Time | Start End Mass | anneal | anneal | Total initial | (atm.cc | (atm.cc
ID | (°C) (hr) Date Date (gm) (gm) (gm) (gm) |Ag mass| /sec) /sec)
S09 0.5153 8.0E-05
S10 | 1500 | 300 | 7/18/02 ] 7/31/02 | 0.5072 | 3.4318 | 3.4296 | 0.0022 | 0.0043 | 8.0E-07 | 6.0E-06
1500 | 725 | 8/23/02 | 9/22/02 | 0.5072 | 3.4295 | 3.4301 | -0.0006 | -0.0012 5.0E-06
1500 | 1025 0.5072 | 3.4318 | 3.4301 | 0.0017 | 0.0034 | 8.0E-07 | 5.0E-06
S11 ] 1500 | 300 | 7/18/02 ] 7/31/02 | 0.5019 | 3.3225 | 3.3202 | 0.0023 | 0.0046 | 5.0E-07 | 5.0E-06
1500 | 725 | 8/23/02 | 9/22/02 | 0.5019 | 3.3203 | 3.3188 | 0.0015 | 0.0030 5.0E-06
1500 | 1025 0.5019 | 3.3225 | 3.3188 | 0.0037 | 0.0074 | 5.0E-07 | 5.0E-06
S12 | 1350 | 500 | 7/18/02 | 8/8/02 | 0.5024 | 3.4130 | 3.4123 | 0.0007 | 0.0014 | 7.0E-07 | 3.0E-06
1350 | 1000 | 9/24/02 | 11/5/02 | 0.5024 | 3.4121 | 3.4114 | 0.0007 | 0.0014 3.0E-06
1350 | 1500 0.5024 | 3.4130 | 3.4114 | 0.0016 | 0.0032 | 7.0E-07 | 3.0E-06
S13 | 1350 | 500 | 7/18/02 | 8/8/02 | 0.5064 | 3.4841 | 3.4833 | 0.0008 | 0.0016 | 7.0E-07 | 3.0E-06
1350 | 1000 | 9/24/02 | 11/5/02 | 0.5064 | 3.4831 | 3.4824 | 0.0007 | 0.0014 3.0E-06
1350 | 1500 0.5064 | 3.4841 | 3.4824 | 0.0017 | 0.0034 | 7.0E-07 | 3.0E-06
S22 | 1500 75 | 4/22/02 | 4/25/02 | 0.5007 | 3.3326 | 3.3313 | 0.0013 | 0.0026 | 6.5E-07 | 4.0E-06
1500 | 425 | 6/26/02 | 7/15/02 | 0.5007 | 3.3314 | 3.3298 | 0.0016 | 0.0032 8.0E-06
1500 | 500 0.5007 | 3.3326 | 3.3298 | 0.0028 | 0.0056 | 6.5E-07 | 8.0E-06

Table B-10. SiC-3 Diffusion Couple SiC Coating and Fabrication Data.

SiC Coating Sample Fabrication / Silver Data
Total Male Male Male
SiC Coated SiC SiC Shell +Ag +Ag+ Ag Female |+ SiC in
Coating Mass Mass | thick | Silver | Mass Mass | Female | Mass Mass seam

ID | Date (gm) (gm) | (pm) | Date | (gm) | (gm) (gm) | (gm) (gm) (gm)
S09 | 7/1/02 3.3911 | 0.3345 | 90.5 | 6/7/02 | 1.3264 | 1.8417 | 3.0566 | 0.5153 | 1.2149 | 3.0614
S10 | 6/14/02 | 3.2370 | 0.2106 | 57.2 | 6/13/02 | 1.3324 | 1.8396 | 3.0264 | 0.5072 | 1.1868 | 3.0289
S11] 6/14/02 | 3.1231 | 0.2302 | 62.5 | 6/13/02 | 1.3182 | 1.8201 | 2.8929 | 0.5019 | 1.0728 | 2.8962
S12 | 6/14/02 | 3.2126 | 0.2126 | 57.7 | 6/13/02 | 1.3567 | 1.8591 | 3.0000 | 0.5024 | 1.1409 | 3.0033
S13 | 6/14/02 | 3.2815 | 0.2013 | 54.7 | 6/13/02 | 1.3393 | 1.8457 | 3.0802 | 0.5064 | 1.2345 | 3.0849
S22 | 4/2/02 3.3326 | 0.2322 | 63.0 | 3/28/02 | 1.3321 | 1.8328 | 3.1004 | 0.5007 | 1.2676




Table B-11. SiC-3 Diffusion Couple Additional SiC Coating Data.

Additional SiC Coating Data

Total | Previous added added total

Coated | Coated SiC SiC SiC

SiC Coating| Mass Mass Mass thickness thick

1D Date (gm) (gm) (gm) (pm) (um)

S09 7/2/02 3.6049 3.3911 0.2138 58.1 148.6

S10 6/17/02 3.4319 3.2370 0.1949 53.0 110.2

S11 6/17/02 3.3226 3.1231 0.1995 54.2 116.7

S12 6/17/02 3.4133 3.2126 0.2007 54.5 112.3

S13 6/17/02 3.4841 3.2815 0.2026 55.0 109.7
S22 n/a
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APPENDIX C (MIT):
Vapor Flow Modeling

Flow Regimes

The Knudsen number is the ratio of the mean free path of a molecule to a characteristic
dimension of the channel, usually the tube diameter, through which the gas is flowing. The
Knudsen number describes the limits between molecular, intermediate, and laminar flow and is

defined by (Varian Proceedings 1976):

A
Kn=— (C-1)
d
where  Kn = Knudsen number,
A = mean free path (m), and
d = channel diameter (m).

The Reynolds number is the ratio for inertial to viscous forces and is used, among other things, to
establish the limit between turbulent and laminar flow. The Reynolds number is defined by the

following equation (Roth 1976):

Re=2" d (C-2)
n
where  Re = Reynolds number,
v = velocity (cm/s),
p = gas density (g/cm’),
d = channel diameter (cm), and
n = viscosity (poise).

For flow in a circular duct the transport is considered turbulent for Re > 2100 and laminar for Re
< 1100. Table C-1 lists the different gas states, flow regimes, and applicable dimensionless

number limits.

Table C-1. Conditions for the different flow regimes.

Gas State Flow Regime Condition
turbulent Re > 2100
viscous . Re <1100
laminar Kn<0.01
transition intermediate 00l <Kn<1
rarefied molecular Kn>1

C-1



In order to calculate the Knudsen number for a specified gas and flow channel, the mean free path
of a molecule in the gas is required. For a gas governed by the ideal gas law, the mean free path

of a molecule is given by (Mean Free Path 2004):

p) RT
= C-3
27zd* N, P (3

where A = mean free path (m),

R = universal gas constant (8.314 J/mol-K),

T = absolute temperature (K),

d = molecular diameter (m),

N,y = Avogadro's number (6.02x10* atoms/mol), and

P = pressure (Pa).

From the Smithsonian Physical Tables, the atomic radii for helium and silver are 0.93 and 1.44 A,
respectively (Knovel online databases 2004). Using these values, the mean free path of helium
and silver can be calculated at any temperature and pressure. Then, for a given crack tube

diameter, the Knudsen number can be calculated and the flow regime determined.

The flow equations for viscous, molecular, and transition flow are described in the following

sections.

Viscous Flow

At moderate pressures the gas molecules undergo collisions primarily with other gas molecules
rather than with the walls of the flow channel; gas viscosity limits flow. Turbulent flow is not
usually experienced in leak flow and will not be considered here. For the viscous state, laminar

flow is described as follows.

The conductance of a gas governed by laminar flow is (Alcatel Vacuum Technology):

4
P
Claminar = Z (ij = (C_4)
8\2) nL

where C = conductance (10* liter/sec),

d = crack diameter (m),

P,, = average of the upstream and downstream pressures (Pa),

n = viscosity of the gas (poise), and

L = length of the crack tube (m).

C-2



To convert from conductance to mass loss, a value measured (or derived) from experiments, the
time of the experiment and the molar volume are also needed. The molar volume is calculated

from the ideal gas law and is given by:

RT
vmolar = P (C'S)
where Vmolar =  molar volume (m3/mol),
R = gas constant (8.314 J/mol-K),
T = absolute temperature (K), and
P = pressure (Pa).
The following equation converts conductance to mass loss:
C, .
Qlaminar = —Jaminar aw (C—6)
molar
where Olamina» = mass loss (g),
Cramine- = laminar flow conductance (liter/sec),
t = time (sec),
Vmolar =  molar volume (m3/mol), and
aw = atomic weight of the gas (g/mol).

Molecular Flow

At very low pressures, the mean free path of the gas molecules is much larger than the
dimensions of the vacuum enclosure. Under these conditions, the gas molecules undergo
collisions primarily with the walls of the flow channel rather than with other molecules; this is

molecular flow. The conductance of a gas governed by molecular flow is defined as:

o _l[prrTa -
molecular 6 aw L

where  Choecui= conductance (liter/sec),

R = gas constant (8.314 J/mol-K),

T = absolute temperature (K),

d = crack diameter (m),

aw = atomic weight of the gas (107.87 g/mol for silver), and

L = length of the crack tube (assumed equal to the thickness) (m).

C-3



Using the molar volume as defined by equation (C-5), the mass loss over a specified time, ¢, due

to molecular flow is given by:

C t
_ “molecular
Qmolecular - aw (C—8)

molar

where Omolecula= mass loss (g),
Cholecui=  1aminar flow conductance (liter/sec),

t = time (sec),
Vmolaw =  molar volume (m*/mol), and
aw = atomic weight of the gas (g/mol).

The molecular flow equation attributed to Knudsen applies to pipes of circular cross-section. For
pipes of equal cross-sectional areas, pipes with non-circular cross-sections will experience lower

conduction than those with circular cross-sections.

Transitional Flow
Transitional flow occurs for gas states between laminar and molecular, where both phenomena

contribute to the flow. The leak rate for transitional flow is a combination of both the laminar

and molecular flow equations:

‘P, V27 [RT d&°
thnsition = Z (ij - (f)l - P2 )+ i d_ (f)l - P2 ) (C—9)
6 aw L

8\2) nlL

where Ouansiion—  leak rate (atm-cmS/ sec),

d = crack diameter (m),

P,, = average pressure (Pa),

P, = upstream pressure (Pa),

P, = downstream pressure (Pa),

n = viscosity (poise),

L = length of the crack tube (assumed equal to the SiC thickness) (m),
R = gas constant (8.314 J/mol-K),

T = absolute temperature (K), and

aw = atomic weight of the gas (107.87 g/mol for silver).

C-4
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APPENDIX D (INEEL):
Project Milestone Summary

Table D-1. Project Milestone/ Deliverable Summary.
Milestone Deliverable Planned Actual
Description Completion | Completion
Date Date
1 Document results of the data exchange Oct 2002 Oct 2002
and the description of fuel particle
models.
2 Document the first year modeling Oct 2002 Oct 2002
accomplishments
3 Document interim status of concept Oct 2003 Oct 2003
improvement, results to date on
experiments to measure Ag and Pd
diffusion through coating layers, and
assessment of failure mechanisms of
classical TRISO particles
4 Document final results of project Oct 2004 Oct 2003

including feasibility of extending the
coated particle fuel concept to a fast

spectrum, and outlining the types of

irradiations needed to test prototype

particles




Table D-2. Task Completion.

Year 1

Year 2

Year 3

Task 1: Information Exchange

Task 2: Model Development

Task 3: Concept Improvements

Task 4: Feasibility of concept in hard
spectrum

Task 5: Irradiation of prototype
particles

D-2
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